Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corneliu Buda is active.

Publication


Featured researches published by Corneliu Buda.


Journal of the American Chemical Society | 2011

Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters

Ayman D. Allian; Kazuhiro Takanabe; Kyle L. Fujdala; Xianghong Hao; Timothy J. Truex; Juan Cai; Corneliu Buda; Matthew Neurock; Enrique Iglesia

Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis at conditions typical of its industrial practice. CO oxidation turnover rates and the dynamics and thermodynamics of adsorption-desorption processes on cluster surfaces saturated with chemisorbed CO were measured on 1-20 nm Pt clusters under conditions of strict kinetic control. Turnover rates are proportional to O(2) pressure and inversely proportional to CO pressure, consistent with kinetically relevant irreversible O(2) activation steps on vacant sites present within saturated CO monolayers. These conclusions are consistent with the lack of isotopic scrambling in C(16)O-(18)O(2)-(16)O(2) reactions, and with infrared bands for chemisorbed CO that did not change within a CO pressure range that strongly influenced CO oxidation turnover rates. Density functional theory estimates of rate and equilibrium constants show that the kinetically relevant O(2) activation steps involve direct O(2)* (or O(2)) reactions with CO* to form reactive O*-O-C*=O intermediates that decompose to form CO(2) and chemisorbed O*, instead of unassisted activation steps involving molecular adsorption and subsequent dissociation of O(2). These CO-assisted O(2) dissociation pathways avoid the higher barriers imposed by the spin-forbidden transitions required for unassisted O(2) dissociation on surfaces saturated with chemisorbed CO. Measured rate parameters for CO oxidation were independent of Pt cluster size; these parameters depend on the ratio of rate constants for O(2) reactions with CO* and CO adsorption equilibrium constants, which reflect the respective activation barriers and reaction enthalpies for these two steps. Infrared spectra during isotopic displacement and thermal desorption with (12)CO-(13)CO mixtures showed that the binding, dynamics, and thermodynamics of CO chemisorbed at saturation coverages do not depend on Pt cluster size in a range that strongly affects the coordination of Pt atoms exposed at cluster surfaces. These data and their theoretical and mechanistic interpretations indicate that the remarkable structure insensitivity observed for CO oxidation reactions reflects average CO binding properties that are essentially independent of cluster size. Theoretical estimates of rate and equilibrium constants for surface reactions and CO adsorption show that both parameters increase as the coordination of exposed Pt atoms decreases in Pt(201) cluster surfaces; such compensation dampens but does not eliminate coordination and cluster size effects on measured rate constants. The structural features and intrinsic non-uniformity of cluster surfaces weaken when CO forms saturated monolayers on such surfaces, apparently because surfaces and adsorbates restructure to balance CO surface binding and CO-CO interaction energies.


Journal of the American Chemical Society | 2013

CO Chemisorption and Dissociation at High Coverages during CO Hydrogenation on Ru Catalysts

Brett T. Loveless; Corneliu Buda; Matthew Neurock; Enrique Iglesia

Density functional theory (DFT) and infrared spectroscopy results are combined with mechanism-based rate equations to assess the structure and thermodynamics of chemisorbed CO (CO*) and its activation during Fischer-Tropsch synthesis (FTS). CO* binding becomes weaker with increasing coverage on Ru(0001) and Ru201 clusters, but such decreases in binding energy occur at higher coverages on Ru201 clusters than on Ru(0001) surfaces (CO*/Ru = 1.55 to 0.75); such differences appear to reflect weaker repulsive interactions on the curved surfaces prevalent on small Ru201 clusters. Ru201 clusters achieve stable supramonolayer coverages (CO*/Ru > 1) by forming geminal dicarbonyls at low-coordination corner/edge atoms. CO* infrared spectra on Ru/SiO2 (~7 nm diameter) detect mobile adlayers that anneal into denser structures at saturation. Mechanism-based FTS rate equations give activation energies that reflect the CO*-saturated surfaces prevalent during catalysis. DFT-derived barriers show that CO* predominantly reacts at (111) terraces via H-assisted reactions, consistent with measured effects of H2 and CO pressures and cluster size effects on rates and O-rejection selectivities. Barriers are much higher for unassisted CO* dissociation on (111) terraces and low-coordination atoms, including step-edge sites previously proposed as active sites for CO* dissociation during FTS. DFT-derived barriers indicate that unassisted CO* dissociation is irreversible, making such steps inconsistent with measured rates. The modest activation barriers of H-assisted CO* dissociation paths remove a requirement for special low-coordination sites for unassisted CO* activation, which is inconsistent with higher rates on larger clusters. These conclusions seem generally applicable to Co, Fe, and Ru catalysts, which show similar FTS rate equations and cluster size effects. This study also demonstrates the feasibility and relevance of DFT treatments on the curved and crowded cluster surfaces where catalysis occurs.


Journal of the American Chemical Society | 2013

Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH4 Reactions on Pd Catalysts

Ya-Huei Chin; Corneliu Buda; Matthew Neurock; Enrique Iglesia

Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd(2+)-O(2-)) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd(2+)-O(2-) pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C···Pd···H)(‡) transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3(•)···*OH)(‡) that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd(2+) and vicinal O(2-), Pd(ox)-O(ox), cleave C-H bonds heterolytically via σ-bond metathesis, with Pd(2+) adding to the C-H bond, while O(2-) abstracts the H-atom to form a four-center (H3C(δ-)···Pd(ox)···H(δ+)···O(ox))(‡) transition state without detectable Pd(ox) reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory and experiment, resemble those prevalent on organometallic complexes. Metal centers present on surfaces as well as in homogeneous complexes act as both nucleophile and electrophile in oxidative additions, ligands (e.g., O* on surfaces) abstract H-atoms via reductive deprotonation of C-H bonds, and metal-ligand pairs, with the pair as electrophile and the metal as nucleophile, mediate σ-bond metathesis pathways.


Journal of the American Chemical Society | 2011

Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.

Ya-Huei Chin; Corneliu Buda; Matthew Neurock; Enrique Iglesia

Kinetic and isotopic data and density functional theory treatments provide evidence for the elementary steps and the active site requirements involved in the four distinct kinetic regimes observed during CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants on Pt clusters. These four regimes exhibit distinct rate equations because of the involvement of different kinetically relevant steps, predominant adsorbed species, and rate and equilibrium constants for different elementary steps. Transitions among regimes occur as chemisorbed oxygen (O*) coverages change on Pt clusters. O* coverages are given, in turn, by a virtual O(2) pressure, which represents the pressure that would give the prevalent steady-state O* coverages if their adsorption-desorption equilibrium was maintained. The virtual O(2) pressure acts as a surrogate for oxygen chemical potentials at catalytic surfaces and reflects the kinetic coupling between C-H and O═O activation steps. O* coverages and virtual pressures depend on O(2) pressure when O(2) activation is equilibrated and on O(2)/CH(4) ratios when this step becomes irreversible as a result of fast scavenging of O* by CH(4)-derived intermediates. In three of these kinetic regimes, C-H bond activation is the sole kinetically relevant step, but occurs on different active sites, which evolve from oxygen-oxygen (O*-O*), to oxygen-oxygen vacancy (O*-*), and to vacancy-vacancy (*-*) site pairs as O* coverages decrease. On O*-saturated cluster surfaces, O*-O* site pairs activate C-H bonds in CH(4) via homolytic hydrogen abstraction steps that form CH(3) groups with significant radical character and weak interactions with the surface at the transition state. In this regime, rates depend linearly on CH(4) pressure but are independent of O(2) pressure. The observed normal CH(4)/CD(4) kinetic isotope effects are consistent with the kinetic-relevance of C-H bond activation; identical (16)O(2)-(18)O(2) isotopic exchange rates in the presence or absence of CH(4) show that O(2) activation steps are quasi-equilibrated during catalysis. Measured and DFT-derived C-H bond activation barriers are large, because of the weak stabilization of the CH(3) fragments at transition states, but are compensated by the high entropy of these radical-like species. Turnover rates in this regime decrease with increasing Pt dispersion, because low-coordination exposed Pt atoms on small clusters bind O* more strongly than those that reside at low-index facets on large clusters, thus making O* less effective in H-abstraction. As vacancies (*, also exposed Pt atoms) become available on O*-covered surfaces, O*-* site pairs activate C-H bonds via concerted oxidative addition and H-abstraction in transition states effectively stabilized by CH(3) interactions with the vacancies, which lead to much higher turnover rates than on O*-O* pairs. In this regime, O(2) activation becomes irreversible, because fast C-H bond activation steps scavenge O* as it forms. Thus, O* coverages are set by the prevalent O(2)/CH(4) ratios instead of the O(2) pressures. CH(4)/CD(4) kinetic isotope effects are much larger for turnovers mediated by O*-* than by O*-O* site pairs, because C-H (and C-D) activation steps are required to form the * sites involved in C-H bond activation. Turnover rates for CH(4)-O(2) reactions mediated by O*-* pairs decrease with increasing Pt dispersion, as in the case of O*-O* active structures, because stronger O* binding on small clusters leads not only to less reactive O* atoms, but also to lower vacancy concentrations at cluster surfaces. As O(2)/CH(4) ratios and O* coverages become smaller, O(2) activation on bare Pt clusters becomes the sole kinetically relevant step; turnover rates are proportional to O(2) pressures and independent of CH(4) pressure and no CH(4)/CD(4) kinetic isotope effects are observed. In this regime, turnover rates become nearly independent of Pt dispersion, because the O(2) activation step is essentially barrierless. In the absence of O(2), alternate weaker oxidants, such as H(2)O or CO(2), lead to a final kinetic regime in which C-H bond dissociation on *-* pairs at bare cluster surfaces limit CH(4) conversion rates. Rates become first-order in CH(4) and independent of coreactant and normal CH(4)/CD(4) kinetic isotope effects are observed. In this case, turnover rates increase with increasing dispersion, because low-coordination Pt atoms stabilize the C-H bond activation transition states more effectively via stronger binding to CH(3) and H fragments. These findings and their mechanistic interpretations are consistent with all rate and isotopic data and with theoretical estimates of activation barriers and of cluster size effects on transition states. They serve to demonstrate the essential role of the coverage and reactivity of chemisorbed oxygen in determining the type and effectiveness of surface structures in CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants, as well as the diversity of rate dependencies, activation energies and entropies, and cluster size effects that prevail in these reactions. These results also show how theory and experiments can unravel complex surface chemistries on realistic catalysts under practical conditions and provide through the resulting mechanistic insights specific predictions for the effects of cluster size and surface coordination on turnover rates, the trends and magnitude of which depend sensitively on the nature of the predominant adsorbed intermediates and the kinetically relevant steps.


Journal of Catalysis | 2011

Selectivity of chemisorbed oxygen in C-H bond activation and CO oxidation and kinetic consequences for CH4-O2 catalysis on Pt and Rh clusters

Ya-Huei Chin; Corneliu Buda; Matthew Neurock; Enrique Iglesia


ACS Catalysis | 2015

Different Product Distributions and Mechanistic Aspects of the Hydrodeoxygenation of m-Cresol over Platinum and Ruthenium Catalysts

Qiaohua Tan; Gonghua Wang; Lei Nie; Arne Dinse; Corneliu Buda; John Shabaker; Daniel E. Resasco


Journal of Physical Chemistry B | 2006

Hydrogen Physisorption on the Organic Linker in Metal Organic Frameworks: Ab Initio Computational Study

Miguel Wong; Corneliu Buda; Barry D. Dunietz


Journal of Physical Chemistry C | 2009

Multiadsorption and Coadsorption of Hydrogen on Model Conjugated Systems

Miguel Wong; Benjamin E. Van Kuiken; Corneliu Buda; Barry D. Dunietz


Journal of Catalysis | 2017

Mechanistic analysis of the role of metal oxophilicity in the hydrodeoxygenation of anisole

Qiaohua Tan; Gonghua Wang; Alex Long; Arne Dinse; Corneliu Buda; John Shabaker; Daniel E. Resasco


Journal of Physical Chemistry C | 2010

IR Spectroscopic Measurement of Diffusion Kinetics of Chemisorbed Pyridine through TiO2 Particles

Isabel Xiaoye Green; Corneliu Buda; Zhen Zhang; Matthew Neurock; John T. Yates

Collaboration


Dive into the Corneliu Buda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Dinse

University of California

View shared research outputs
Top Co-Authors

Avatar

Cathy Chin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge