Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornelius Miething is active.

Publication


Featured researches published by Cornelius Miething.


Nature | 2007

Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas

Wen Xue; Lars Zender; Cornelius Miething; Ross A. Dickins; Eva Hernando; Valery Krizhanovsky; Carlos Cordon-Cardo; Scott W. Lowe

Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.


Cell | 2007

NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta.

Florian R. Greten; Melek C. Arkan; Julia Bollrath; Li-Chung Hsu; Jason Goode; Cornelius Miething; Serkan Göktuna; Michael Neuenhahn; Joshua Fierer; Stephan Paxian; Nico van Rooijen; Yajun Xu; Timothy D. Ocain; Bruce Jaffee; Dirk H. Busch; Justus Duyster; Roland M. Schmid; Lars Eckmann; Michael Karin

IKKbeta-dependent NF-kappaB activation plays a key role in innate immunity and inflammation, and inhibition of IKKbeta has been considered as a likely anti-inflammatory therapy. Surprisingly, however, mice with a targeted IKKbeta deletion in myeloid cells are more susceptible to endotoxin-induced shock than control mice. Increased endotoxin susceptibility is associated with elevated plasma IL-1beta as a result of increased pro-IL-1beta processing, which was also seen upon bacterial infection. In macrophages enhanced pro-IL-1beta processing depends on caspase-1, whose activation is inhibited by NF-kappaB-dependent gene products. In neutrophils, however, IL-1beta secretion is caspase-1 independent and depends on serine proteases, whose activity is also inhibited by NF-kappaB gene products. Prolonged pharmacologic inhibition of IKKbeta also augments IL-1beta secretion upon endotoxin challenge. These results unravel an unanticipated role for IKKbeta-dependent NF-kappaB signaling in the negative control of IL-1beta production and highlight potential complications of long-term IKKbeta inhibition.


Cancer Cell | 2009

Functional Identification of Tumor-Suppressor Genes through an In Vivo RNA Interference Screen in a Mouse Lymphoma Model

Anka Bric; Cornelius Miething; Carl Uli Bialucha; Claudio Scuoppo; Lars Zender; Alexander Krasnitz; Zhenyu Xuan; Johannes Zuber; Michael Wigler; James Hicks; Richard McCombie; Michael T. Hemann; Gregory J. Hannon; Scott Powers; Scott W. Lowe

Short hairpin RNAs (shRNAs) capable of stably suppressing gene function by RNA interference (RNAi) can mimic tumor-suppressor-gene loss in mice. By selecting for shRNAs capable of accelerating lymphomagenesis in a well-characterized mouse lymphoma model, we identified over ten candidate tumor suppressors, including Sfrp1, Numb, Mek1, and Angiopoietin 2. Several components of the DNA damage response machinery were also identified, including Rad17, which acts as a haploinsufficient tumor suppressor that responds to oncogenic stress and whose loss is associated with poor prognosis in human patients. Our results emphasize the utility of in vivo RNAi screens, identify and validate a diverse set of tumor suppressors, and have therapeutic implications.


Nature | 2012

A tumour suppressor network relying on the polyamine–hypusine axis

Claudio Scuoppo; Cornelius Miething; Lisa Lindqvist; José Luis Reyes; Cristian Ruse; Iris Appelmann; Seungtai Yoon; Alexander Krasnitz; Julie Teruya-Feldstein; Darryl Pappin; Jerry Pelletier; Scott W. Lowe

Tumour suppressor genes encode a broad class of molecules whose mutational attenuation contributes to malignant progression. In the canonical situation, the tumour suppressor is completely inactivated through a two-hit process involving a point mutation in one allele and chromosomal deletion of the other. Here, to identify tumour suppressor genes in lymphoma, we screen a short hairpin RNA library targeting genes deleted in human lymphomas. We functionally identify those genes whose suppression promotes tumorigenesis in a mouse lymphoma model. Of the nine tumour suppressors we identified, eight correspond to genes occurring in three physically linked ‘clusters’, suggesting that the common occurrence of large chromosomal deletions in human tumours reflects selective pressure to attenuate multiple genes. Among the new tumour suppressors are adenosylmethionine decarboxylase 1 (AMD1) and eukaryotic translation initiation factor 5A (eIF5A), two genes associated with hypusine, a unique amino acid produced as a product of polyamine metabolism through a highly conserved pathway. Through a secondary screen surveying the impact of all polyamine enzymes on tumorigenesis, we establish the polyamine–hypusine axis as a new tumour suppressor network regulating apoptosis. Unexpectedly, heterozygous deletions encompassing AMD1 and eIF5A often occur together in human lymphomas and co-suppression of both genes promotes lymphomagenesis in mice. Thus, some tumour suppressor functions can be disabled through a two-step process targeting different genes acting in the same pathway.


Leukemia | 2002

Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27

Thomas Decker; Folker Schneller; S Hipp; Cornelius Miething; T Jahn; Justus Duyster; Christian Peschel

B-CLL cells are arrested in G0/early G1 phase of the cell cycle and are characterized by a marked hyporesponsiveness towards a variety of polyclonal B cell activators. We have previously demonstrated that costimulation with CpG-ODN and IL-2 can overcome this proliferative defect. Cyclin D3 is the principal D-type cyclin which mediates G1 progression in normal B cells, but in B-CLL cells both cyclin D2 and cyclin D3, were strongly upregulated upon stimulation. Both cyclins were associated with cdk4 but not with cdk6, which is the catalytic partner of D-type cyclins in normal B cells. Moreover, immune complexes consisting of cyclin D2 and cdk4 or cyclin D3 and cdk4 were both functional and phosphorylated the RB protein in vitro. The cell cycle inhibitor p27 plays a pivotal role in cell cycle progression of B lymphocytes and has been shown to be overexpressed in B-CLL cells. P27 was rapidly downregulated in B-CLL cells even when stimulated with a non-CpG-ODN or IL-2 alone, while only moderate regulation could be observed in normal B cells. Taken together, our findings demonstrate that regulation of early cell cycle progression differs between B-CLL cells and normal B cells. These findings do not only contribute to the understanding of B-CLL pathophysiology, but might ultimately lead to the identification of new therapeutic targets.


Oncogene | 2002

Analysing c-kit internalization using a functional c-kit-EGFP chimera containing the fluorochrome within the extracellular domain

Thomas Jahn; Petra Seipel; Sunita Coutinho; Susanne Urschel; Kathleen Schwarz; Cornelius Miething; Hubert Serve; Christian Peschel; Justus Duyster

In order to investigate activation and internalization of c-kit we created a functional c-kit-EGFP chimera by inserting EYFP (enhanced yellow fluorescent protein) within the extracellular domain of c-kit immediately downstream of the signal sequence, SS-EYFP-kit. This location was chosen because the C-terminal fusion of EGFP to c-kit unexpectedly caused constitutive activation of the c-kit tyrosine kinase. As analysed in fixed cells and by real time imaging in vivo, SCF induced activation led to internalization of the fusion construct and translocation to punctate structures resembling vesicles. Analysis of the internalization process by time lapse imaging revealed high mobility and discontinuous movement of these vesicles and their predominantly radial tracks. Two subsets of vesicles were observed: Traffic of the majority of vesicles was directed from the periphery to the center of the cell and most likely represents the internalization of activated receptor molecules via the endosomal pathway. However, some vesicular structures were observed to move towards the periphery of the cell and probably contain newly synthesized protein to replace internalized receptor molecules. The calculated velocity of moving vesicles ranged from 0.05 to 0.2 μm per se. Vesicle formation upon SCF induced dimerization of the receptor was strictly dependent on kinase activity of c-kit. Treatment of cells with phenylarsine oxide, an agent blocking receptor internalization, prior to SCF stimulation resulted in abrogation of the translocation of the chimera to vesicles whereas accumulation of vesicles was observed when cells were treated with proteasome inhibitors. Cholesterol depletion of the cell membrane by methyl-β-cyclodextrin resulted in dose dependent reduction of receptor internalization indicating that c-kit may be present in lipid rafts or that intact lipid rafts are required for efficient internalization of the receptor. Using the induction of vesicular structures as a sign of efficient internalization of the receptor analysis of mutant c-kit constructs deficient either in activation of PI3-Kinase or Src revealed that internalization of c-kit is dependent on recruitment of Src but not PI3-Kinase.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment

Cornelius Miething; Rebekka Grundler; Claudia Mugler; Simone Brero; Josef Hoepfl; Jochen B. Geigl; Michael R. Speicher; Oliver G. Ottmann; Christian Peschel; Justus Duyster

The kinase inhibitor imatinib mesylate targeting the oncoprotein Bcr-Abl has revolutionized the treatment of chronic myeloid leukemia (CML). However, even though imatinib successfully controls the leukemia in chronic phase, it seems not to be able to cure the disease, potentially necessitating lifelong treatment with the inhibitor under constant risk of relapse. On a molecular level, the cause of disease persistence is not well understood. Initial studies implied that innate features of primitive progenitor cancer stem cells may be responsible for the phenomenon. Here, we describe an assay using retroviral insertional mutagenesis (RIM) to identify genes contributing to disease persistence in vivo. We transplanted mice with bone marrow cells retrovirally infected with the Bcr-Abl oncogene and subsequently treated the animals with imatinib to select for leukemic cells in which the proviral integration had affected genes modulating the imatinib response. Southern blot analysis demonstrated clonal outgrowth of cells carrying similar integration sites. Candidate genes located near the proviral insertion sites were identified, among them the transcription factor RUNX3. Proviral integration near the RUNX3 promoter induced RUNX3 expression, and Bcr-Abl-positive cell lines with stable or inducible expression of RUNX1 or RUNX3 were protected from imatinib-induced apoptosis. Furthermore, imatinib treatment selected for RUNX1-expressing cells in vitro and in vivo after infection of primary bone marrow cells with Bcr-Abl and RUNX1. Our results demonstrate the utility of RIM for probing molecular modulators of targeted therapies and suggest a role for members of the RUNX transcription factor family in disease persistence in CML patients.


Leukemia | 2006

The Bcr-Abl mutations T315I and Y253H do not confer a growth advantage in the absence of imatinib.

Cornelius Miething; S Feihl; Claudia Mugler; Rebekka Grundler; N von Bubnoff; Florian Lordick; Christian Peschel; Justus Duyster

Mutations in the Bcr-Abl kinase domain are a frequent cause of imatinib resistance in patients with advanced CML or Ph+ ALL. The impact of these mutations on the overall oncogenic potential of Bcr-Abl and on the clinical course of the disease in the absence of imatinib is presently unclear. In this study, we analyzed the effects of the Bcr-Abl P-loop mutation Y253H and the highly imatinib resistant T315I mutation on kinase activity in vitro and transforming efficiency of Bcr-Abl in vitro and in vivo. Immunoprecipitated Bcr-AblY253H and Bcr-AblT315I proteins displayed similar kinase activities and substrate phosphorylation patterns as Bcr-Abl wildtype. We directly compared the proliferative capacity of mutant to wildtype Bcr-Abl in primary BM cells in vitro and in a murine transplantation model of CML by using a competitive repopulation assay. The results implicate that in the absence of imatinib, there is no growth advantage for cells carrying Bcr-AblT315I or Bcr-AblY253H compared to Bcr-Ablwt, whereas imatinib treatment clearly selects for leukemic cells expressing mutant Bcr-Abl both in vitro and in vivo. Thus, the analysed Bcr-Abl mutants confer imatinib resistance, but do not induce a growth advantage in the absence of imatinib.


Oncogene | 2003

The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) induces two distinct malignant phenotypes in a murine retroviral transplantation model

Cornelius Miething; Rebekka Grundler; Falco Fend; Josef Hoepfl; Claudia Mugler; Christoph von Schilling; Stephan W. Morris; Christian Peschel; Justus Duyster

A t(2;5) (p23;q35) chromosomal translocation can be found in a high percentage of anaplastic large-cell lymphomas (ALCL). This genetic abnormality leads to the expression of the NPM–ALK fusion protein, which encodes a constitutively active tyrosine kinase that plays a causative role in lymphomagenesis. Employing a modified infection/transplantation protocol utilizing an MSCV-based vector, we were able to reproducibly induce two phenotypically different lymphoma-like diseases dependent on the retroviral titers used. The first phenotype presented as a polyclonal histiocytic malignancy of myeloid/macrophage origin with a short latency period of 3–4 weeks. Clinically, the diseased mice showed rapidly progressive wasting, lymphadenopathy and pancytopenia. Mice displaying the second phenotype developed monoclonal B-lymphoid tumors with a longer latency of approximately 12–16 weeks, primarily involving the spleen and the bone marrow, with less extensive lymph node but also histologically evident extranodal organ infiltration by large immature plasmoblastic cells. The described retroviral mouse model will be useful to analyse the role of NPM–ALK in lymphomagenesis in vivo and may contribute to the development of new treatment options for NPM–ALK induced malignancies.


Nature | 2014

PTEN action in leukaemia dictated by the tissue microenvironment

Cornelius Miething; Claudio Scuoppo; Benedikt Bosbach; Iris Appelmann; Joy Nakitandwe; Jing Ma; Gang Wu; Laura Lintault; Martina Auer; Prem K. Premsrirut; Julie Teruya-Feldstein; James Hicks; Helene Benveniste; Michael R. Speicher; James R. Downing; Scott W. Lowe

PTEN encodes a lipid phosphatase that is underexpressed in many cancers owing to deletions, mutations or gene silencing. PTEN dephosphorylates phosphatidylinositol (3,4,5)-triphosphate, thereby opposing the activity of class I phosphatidylinositol 3-kinases that mediate growth- and survival-factor signalling through phosphatidylinositol 3-kinase effectors such as AKT and mTOR. To determine whether continued PTEN inactivation is required to maintain malignancy, here we generate an RNA interference-based transgenic mouse model that allows tetracycline-dependent regulation of PTEN in a time- and tissue-specific manner. Postnatal Pten knockdown in the haematopoietic compartment produced highly disseminated T-cell acute lymphoblastic leukaemia. Notably, reactivation of PTEN mainly reduced T-cell leukaemia dissemination but had little effect on tumour load in haematopoietic organs. Leukaemia infiltration into the intestine was dependent on CCR9 G-protein-coupled receptor signalling, which was amplified by PTEN loss. Our results suggest that in the absence of PTEN, G-protein-coupled receptors may have an unanticipated role in driving tumour growth and invasion in an unsupportive environment. They further reveal that the role of PTEN loss in tumour maintenance is not invariant and can be influenced by the tissue microenvironment, thereby producing a form of intratumoral heterogeneity that is independent of cancer genotype.

Collaboration


Dive into the Cornelius Miething's collaboration.

Top Co-Authors

Avatar

Scott W. Lowe

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Claudio Scuoppo

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Zender

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephan W. Morris

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Christian Thiede

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander Krasnitz

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Iris Appelmann

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

James Hicks

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge