Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cory M. Johannessen is active.

Publication


Featured researches published by Cory M. Johannessen.


Nature | 2010

COT drives resistance to RAF inhibition through MAP kinase pathway reactivation

Cory M. Johannessen; Jesse S. Boehm; So Young Kim; Sapana Thomas; Leslie Wardwell; Laura A. Johnson; Caroline Emery; Nicolas Stransky; Alexandria P. Cogdill; Jordi Barretina; Giordano Caponigro; Haley Hieronymus; Ryan R. Murray; Kourosh Salehi-Ashtiani; David E. Hill; Marc Vidal; Jean Zhao; Xiaoping Yang; Ozan Alkan; Sungjoon Kim; Jennifer L. Harris; Christopher J. Wilson; Vic E. Myer; Peter Finan; David E. Root; Thomas M. Roberts; Todd R. Golub; Keith T. Flaherty; Reinhard Dummer; Barbara Weber

Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50–70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma—an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative ‘druggable’ targets may inform effective long-term treatment strategies. Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.


Journal of Clinical Oncology | 2011

Dissecting Therapeutic Resistance to RAF Inhibition in Melanoma by Tumor Genomic Profiling

Nikhil Wagle; Caroline Emery; Michael F. Berger; Matthew J. Davis; Allison M. Sawyer; Panisa Pochanard; Sarah M. Kehoe; Cory M. Johannessen; Laura E. MacConaill; William C. Hahn; Matthew Meyerson; Levi A. Garraway

A detailed understanding of the mechanisms by which tumors acquire resistance to targeted anticancer agents should speed the development of treatment strategies with lasting clinical efficacy. RAF inhibition in BRAF-mutant melanoma exemplifies the promise and challenge of many targeted drugs; although response rates are high, resistance invariably develops. Here, we articulate overarching principles of resistance to kinase inhibitors, as well as a translational approach to characterize resistance in the clinical setting through tumor mutation profiling. As a proof of principle, we performed targeted, massively parallel sequencing of 138 cancer genes in a tumor obtained from a patient with melanoma who developed resistance to PLX4032 after an initial dramatic response. The resulting profile identified an activating mutation at codon 121 in the downstream kinase MEK1 that was absent in the corresponding pretreatment tumor. The MEK1(C121S) mutation was shown to increase kinase activity and confer robust resistance to both RAF and MEK inhibition in vitro. Thus, MEK1(C121S) or functionally similar mutations are predicted to confer resistance to combined MEK/RAF inhibition. These results provide an instructive framework for assessing mechanisms of acquired resistance to kinase inhibition and illustrate the use of emerging technologies in a manner that may accelerate personalized cancer medicine.


Science | 2016

Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq

Itay Tirosh; Benjamin Izar; Sanjay Prakadan; Marc H. Wadsworth; Daniel J. Treacy; John J. Trombetta; Asaf Rotem; Christopher Rodman; Christine G. Lian; George F. Murphy; Mohammad Fallahi-Sichani; Ken Dutton-Regester; Jia-Ren Lin; Ofir Cohen; Parin Shah; Diana Lu; Alex S. Genshaft; Travis K. Hughes; Carly G.K. Ziegler; Samuel W. Kazer; Aleth Gaillard; Kellie E. Kolb; Alexandra-Chloé Villani; Cory M. Johannessen; Aleksandr Andreev; Eliezer M. Van Allen; Monica M. Bertagnolli; Peter K. Sorger; Ryan J. Sullivan; Keith T. Flaherty

Single-cell expression profiles of melanoma Tumors harbor multiple cell types that are thought to play a role in the development of resistance to drug treatments. Tirosh et al. used single-cell sequencing to investigate the distribution of these differing genetic profiles within melanomas. Many cells harbored heterogeneous genetic programs that reflected two different states of genetic expression, one of which was linked to resistance development. Following drug treatment, the resistance-linked expression state was found at a much higher level. Furthermore, the environment of the melanoma cells affected their gene expression programs. Science, this issue p. 189 Melanoma cells show transcriptional heterogeneity. To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.


Molecular Cell | 2002

REDD1, a Developmentally Regulated Transcriptional Target of p63 and p53, Links p63 to Regulation of Reactive Oxygen Species

Leif W. Ellisen; Kate D Ramsayer; Cory M. Johannessen; Annie Yang; Hideyuki Beppu; Karolina Minda; Jonathan D Oliner; Frank McKeon; Daniel A. Haber

We identified REDD1 as a novel transcriptional target of p53 induced following DNA damage. During embryogenesis, REDD1 expression mirrors the tissue-specific pattern of the p53 family member p63, and TP63 null embryos show virtually no expression of REDD1, which is restored in mouse embryo fibroblasts following p63 expression. In differentiating primary keratinocytes, TP63 and REDD1 expression are coordinately downregulated, and ectopic expression of either gene inhibits in vitro differentiation. REDD1 appears to function in the regulation of reactive oxygen species (ROS); we show that TP63 null fibroblasts have decreased ROS levels and reduced sensitivity to oxidative stress, which are both increased following ectopic expression of either TP63 or REDD1. Thus, REDD1 encodes a shared transcriptional target that implicates ROS in the p53-dependent DNA damage response and in p63-mediated regulation of epithelial differentiation.


Molecular and Cellular Biology | 2005

Regulation of mTOR and cell growth in response to energy stress by REDD1.

Avi Sofer; Kui Lei; Cory M. Johannessen; Leif W. Ellisen

ABSTRACT The tuberous sclerosis tumor suppressors TSC1 and TSC2 regulate the mTOR pathway to control translation and cell growth in response to nutrient and growth factor stimuli. We have recently identified the stress response REDD1 gene as a mediator of tuberous sclerosis complex (TSC)-dependent mTOR regulation by hypoxia. Here, we demonstrate that REDD1 inhibits mTOR function to control cell growth in response to energy stress. Endogenous REDD1 is induced following energy stress, and REDD1 − / − cells are highly defective in dephosphorylation of the key mTOR substrates S6K and 4E-BP1 following either ATP depletion or direct activation of the AMP-activated protein kinase (AMPK). REDD1 likely acts on the TSC1/2 complex, as regulation of mTOR substrate phosphorylation by REDD1 requires TSC2 and is blocked by overexpression of the TSC1/2 downstream target Rheb but is not blocked by inhibition of AMPK. Tetracycline-inducible expression of REDD1 triggers rapid dephosphorylation of S6K and 4E-BP1 and significantly decreases cellular size. Conversely, inhibition of endogenous REDD1 by short interfering RNA increases cell size in a rapamycin-sensitive manner, and REDD1 − / − cells are defective in cell growth regulation following ATP depletion. These results define REDD1 as a critical transducer of the cellular response to energy depletion through the TSC-mTOR pathway.


Cancer Discovery | 2014

MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition

Nikhil Wagle; Eliezer M. Van Allen; Daniel J. Treacy; Dennie T. Frederick; Zachary A. Cooper; Amaro Taylor-Weiner; Mara Rosenberg; Eva M. Goetz; Ryan J. Sullivan; Deborah N. Farlow; Dennis Friedrich; Kristin Anderka; Danielle Perrin; Cory M. Johannessen; Aaron McKenna; Kristian Cibulskis; Gregory V. Kryukov; Eran Hodis; Donald P. Lawrence; Sheila Fisher; Gad Getz; Stacey Gabriel; Scott L. Carter; Keith T. Flaherty; Jennifer A. Wargo; Levi A. Garraway

Treatment of BRAF-mutant melanoma with combined dabrafenib and trametinib, which target RAF and the downstream MAP-ERK kinase (MEK)1 and MEK2 kinases, respectively, improves progression-free survival and response rates compared with dabrafenib monotherapy. Mechanisms of clinical resistance to combined RAF/MEK inhibition are unknown. We performed whole-exome sequencing (WES) and whole-transcriptome sequencing (RNA-seq) on pretreatment and drug-resistant tumors from five patients with acquired resistance to dabrafenib/trametinib. In three of these patients, we identified additional mitogen-activated protein kinase (MAPK) pathway alterations in the resistant tumor that were not detected in the pretreatment tumor, including a novel activating mutation in MEK2 (MEK2(Q60P)). MEK2(Q60P) conferred resistance to combined RAF/MEK inhibition in vitro, but remained sensitive to inhibition of the downstream kinase extracellular signal-regulated kinase (ERK). The continued MAPK signaling-based resistance identified in these patients suggests that alternative dosing of current agents, more potent RAF/MEK inhibitors, and/or inhibition of the downstream kinase ERK may be needed for durable control of BRAF-mutant melanoma.


Nature Methods | 2011

A public genome-scale lentiviral expression library of human ORFs

Xiaoping Yang; Jesse S. Boehm; Xinping Yang; Kourosh Salehi-Ashtiani; Tong Hao; Yun Shen; Rakela Lubonja; Sapana Thomas; Ozan Alkan; Tashfeen Bhimdi; Thomas M. Green; Cory M. Johannessen; Serena J. Silver; Cindy Nguyen; Ryan R. Murray; Haley Hieronymus; Dawit Balcha; Changyu Fan; Chenwei Lin; Lila Ghamsari; Marc Vidal; William C. Hahn; David E. Hill; David E. Root

Functional characterization of the human genome requires tools for systematically modulating gene expression in both loss-of-function and gain-of-function experiments. We describe the production of a sequence-confirmed, clonal collection of over 16,100 human open-reading frames (ORFs) encoded in a versatile Gateway vector system. Using this ORFeome resource, we created a genome-scale expression collection in a lentiviral vector, thereby enabling both targeted experiments and high-throughput screens in diverse cell types.


Nature | 2013

A melanocyte lineage program confers resistance to MAP kinase pathway inhibition

Cory M. Johannessen; Laura A. Johnson; Federica Piccioni; Aisha Townes; Dennie T. Frederick; Melanie K. Donahue; Rajiv Narayan; Keith T. Flaherty; Jennifer A. Wargo; David E. Root; Levi A. Garraway

Malignant melanomas harbouring point mutations (Val600Glu) in the serine/threonine-protein kinase BRAF (BRAF(V600E)) depend on RAF–MEK–ERK signalling for tumour cell growth. RAF and MEK inhibitors show remarkable clinical efficacy in BRAF(V600E) melanoma; however, resistance to these agents remains a formidable challenge. Global characterization of resistance mechanisms may inform the development of more effective therapeutic combinations. Here we carried out systematic gain-of-function resistance studies by expressing more than 15,500 genes individually in a BRAF(V600E) melanoma cell line treated with RAF, MEK, ERK or combined RAF–MEK inhibitors. These studies revealed a cyclic-AMP-dependent melanocytic signalling network not previously associated with drug resistance, including G-protein-coupled receptors, adenyl cyclase, protein kinase A and cAMP response element binding protein (CREB). Preliminary analysis of biopsies from BRAF(V600E) melanoma patients revealed that phosphorylated (active) CREB was suppressed by RAF–MEK inhibition but restored in relapsing tumours. Expression of transcription factors activated downstream of MAP kinase and cAMP pathways also conferred resistance, including c-FOS, NR4A1, NR4A2 and MITF. Combined treatment with MAPK-pathway and histone-deacetylase inhibitors suppressed MITF expression and cAMP-mediated resistance. Collectively, these data suggest that oncogenic dysregulation of a melanocyte lineage dependency can cause resistance to RAF–MEK–ERK inhibition, which may be overcome by combining signalling- and chromatin-directed therapeutics.


Cancer Discovery | 2014

A Melanoma Cell State Distinction Influences Sensitivity to MAPK Pathway Inhibitors

David J. Konieczkowski; Cory M. Johannessen; Omar Abudayyeh; Jong Wook Kim; Zachary A. Cooper; Adriano Piris; Dennie T. Frederick; Michal Barzily-Rokni; Ravid Straussman; Rizwan Haq; David E. Fisher; Jill P. Mesirov; William C. Hahn; Keith T. Flaherty; Jennifer A. Wargo; Pablo Tamayo; Levi A. Garraway

UNLABELLED Most melanomas harbor oncogenic BRAF(V600) mutations, which constitutively activate the MAPK pathway. Although MAPK pathway inhibitors show clinical benefit in BRAF(V600)-mutant melanoma, it remains incompletely understood why 10% to 20% of patients fail to respond. Here, we show that RAF inhibitor-sensitive and inhibitor-resistant BRAF(V600)-mutant melanomas display distinct transcriptional profiles. Whereas most drug-sensitive cell lines and patient biopsies showed high expression and activity of the melanocytic lineage transcription factor MITF, intrinsically resistant cell lines and biopsies displayed low MITF expression but higher levels of NF-κB signaling and the receptor tyrosine kinase AXL. In vitro, these MITF-low/NF-κB-high melanomas were resistant to inhibition of RAF and MEK, singly or in combination, and ERK. Moreover, in cell lines, NF-κB activation antagonized MITF expression and induced both resistance marker genes and drug resistance. Thus, distinct cell states characterized by MITF or NF-κB activity may influence intrinsic resistance to MAPK pathway inhibitors in BRAF(V600)-mutant melanoma. SIGNIFICANCE Although most BRAF(V600)-mutant melanomas are sensitive to RAF and/or MEK inhibitors, a subset fails to respond to such treatment. This study characterizes a transcriptional cell state distinction linked to MITF and NF-κB that may modulate intrinsic sensitivity of melanomas to MAPK pathway inhibitors.


Current Biology | 2008

TORC1 Is Essential for NF1-Associated Malignancies

Cory M. Johannessen; Bryan Johnson; Sybil M. Genther Williams; Annie W. Chan; Elizabeth E. Reczek; Ryan C. Lynch; Matthew J. Rioth; Andrea I. McClatchey; Sandra Ryeom; Karen Cichowski

Inactivating mutations in NF1 underlie the prevalent familial cancer syndrome neurofibromatosis type 1 [1]. The NF1-encoded protein is a Ras GTPase-activating protein (RasGAP) [2]. Accordingly, Ras is aberrantly activated in NF1-deficient tumors; however, it is unknown which effector pathways critically function in tumor development. Here we provide in vivo evidence that TORC1/mTOR activity is essential for tumorigenesis. Specifically, we show that the mTOR inhibitor rapamycin potently suppresses the growth of aggressive NF1-associated malignancies in a genetically engineered murine model. However, in these tumors rapamycin does not function via mechanisms generally assumed to mediate tumor suppression, including inhibition of HIF-1alpha and indirect suppression of AKT, but does suppress the mTOR target Cyclin D1 [3]. These results demonstrate that mTOR inhibitors may be an effective targeted therapy for this commonly untreatable malignancy. Moreover, they indicate that mTOR inhibitors do not suppress all tumor types via the same mechanism, suggesting that current biomarkers that rely on HIF-1alpha suppression may not be informative for all cancers. Finally, our results reveal important differences between the effects of mTOR inhibition on the microvasculature in genetically engineered versus xenograft models and indicate that the former may be required for effective preclinical screening with this class of inhibitors.

Collaboration


Dive into the Cory M. Johannessen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge