Cory T. Forbes
University of Nebraska–Lincoln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cory T. Forbes.
Journal of Science Teacher Education | 2013
Cory T. Forbes
In this nested mixed methods study I investigate factors influencing preservice elementary teachers’ adaptation of science curriculum materials to better support students’ engagement in science as inquiry. Analyses focus on two ‘reflective teaching assignments’ completed by 46 preservice elementary teachers in an undergraduate elementary science methods course in which they were asked to adapt existing science curriculum materials to plan and enact inquiry-based science lessons in elementary classrooms. Data analysis involved regression modeling of artifacts associated with these lessons, as well as in-depth, semester-long case studies of six of these preservice teachers. Results suggest that features of the existing science curriculum materials, including measures of how inquiry-based they were, have a relatively small influence on the preservice teachers’ curricular adaptations, while teacher-specific variables account for a much greater percentage of the variance. Evidence from the case studies illustrates the critical impact of the preservice teachers’ field placement contexts as an explanatory, teacher-specific factor in their curricular adaptations. These findings have important implications for science teacher educators and science curriculum developers, in terms of not only better understanding how preservice teachers engage with curriculum materials, but also how programmatic features of teacher education programs influence their ability to do so.
The Journal of Environmental Education | 2010
Cory T. Forbes; Michaela Zint
This exploratory study investigated elementary teachers’ beliefs about, perceived competencies for, and reported use of scientific inquiry to promote students’ learning about environmental issues and for environmental decision making and action. Data were collected through a questionnaire administered to a simple random sample of elementary teachers in and around a Midwestern university community (n = 121, r = 52%). Respondents did not differentiate between inquiry practices that promote student learning about and for the environment. While respondents believed that they should engage in these practices, they were less confident in their ability to do so, and reported spending little time engaging in these practices. Results also suggest, however, that methods courses and professional development can support elementary teachers’ use of inquiry-based teaching about and for the environment.
International Journal of Science Education | 2012
Mandy Biggers; Cory T. Forbes
Using the National Research Councils inquiry continuum framework, we use a multiple-case study research design to investigate the teacher- and student-directedness of elementary preservice teachers’ planned and enacted science lessons and their pedagogical reasoning about science instruction during a semester-long science methods course. Our specific research questions were (1) What ideas do elementary preservice teachers bring to a science teaching methods course about the inquiry continuum? and (2) How do their ideas about the inquiry continuum change over the course of the semester through engaging in planning, enactment, and reflection upon science instruction? Participants’ course artifacts (journals, reflective teaching assignments, and lesson plan rationales), interviews, and field observations of their enacted science lessons served as data for this study. Findings show that although the preservice teachers began the semester defining inquiry as highly student-directed, their ideas and definitions broadened over the course of the semester to include and embrace more teacher-directed forms of inquiry. Their early science lessons were more student-directed but, as they encountered challenges engaging in inquiry-based instruction and increasingly emphasized students’ learning needs, they began to plan and enact lessons that were more teacher-directed. Teacher education programs need to explicitly emphasize these variations of inquiry as a core component of supporting preservice teachers’ learning to teach science as inquiry.
International Journal of Science Education | 2015
Tina Vo; Cory T. Forbes; Laura Zangori; Christina V. Schwarz
Elementary teachers play a crucial role in supporting and scaffolding students’ model-based reasoning about natural phenomena, particularly complex systems such as the water cycle. However, little research exists to inform efforts in supporting elementary teachers’ learning to foster model-centered, science learning environments. To address this need, we conducted an exploratory multiple-case study using qualitative research methods to investigate six 3rd-grade teachers’ pedagogical reasoning and classroom instruction around modeling practices (construct, use, evaluate, and revise) and epistemic considerations of scientific modeling (generality/abstraction, evidence, mechanism, and audience). Study findings show that all teachers emphasized a subset of modeling practices—construction and use—and the epistemic consideration of generality/abstraction. There was observable consistency between teachers’ articulated conceptions of scientific modeling and their classroom practices. Results also show a subset of the teachers more strongly emphasized additional epistemic considerations and, as a result, better supported students to use models as sense-making tools as well as representations. These findings provide important evidence for developing elementary teacher supports to scaffold students’ engagement in scientific modeling.
International Journal of Science Education | 2015
Laura Zangori; Cory T. Forbes
Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students’ baseline understanding of and their reasoning about plant–ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students’ ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant–abiotic relationships, a much smaller group reasoned about plant–abiotic–animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development.
International Journal of Science Education | 2017
Laura Zangori; Tina Vo; Cory T. Forbes; Christina V. Schwarz
ABSTRACT Scientific modelling is a key practice in which K-12 students should engage to begin developing robust conceptual understanding of natural systems, including water. However, little past research has explored primary students’ learning about groundwater, engagement in scientific modelling, and/or the ways in which teachers conceptualise and cultivate model-based science learning environments. We are engaged in a multi-year project designed to support 3rd-grade students’ formulation of model-based explanations (MBE) for hydrologic phenomenon, including groundwater, through curricular and instructional support. In this quasi-experimental comparative study of five 3rd-grade classrooms, we present findings from analysis of students’ MBE generated as part of experiencing a baseline curricular intervention (Year 1) and a modelling-enhanced curricular intervention (Year 2). Findings show that students experiencing the latter version of the unit made significant gains in both conceptual understanding and reasoning about groundwater, but that these gains varied by classroom. Overall, student gains from Year 1 to Year 2 were attributed to changes in two of the five classrooms in which students were provided additional instructional supports and scaffolds to enhance their MBE for groundwater. Within these two classrooms, the teachers enacted the Year 2 curriculum in unique ways that reflected their deeper understanding about the practices of modelling. Their enactments played a critical role in supporting students’ MBE about groundwater. Study findings contribute to research on scientific modelling in elementary science learning environments and have important implications for teachers and curriculum developers.
International Journal of Science Education | 2018
A. McKinzie Sutter; Jenny M. Dauer; Cory T. Forbes
ABSTRACT One aim of science education is to develop scientific literacy for decision-making in daily life. Socio-scientific issues (SSI) and structured decision-making frameworks can help students reach these objectives. This research uses value belief norm (VBN) theory and construal level theory (CLT) to explore students’ use of personal values in their decision-making processes and the relationship between abstract and concrete problematization and their decision-making. Using mixed methods, we conclude that the level of abstraction with which students problematise a prairie dog agricultural production and ecosystem preservation issue has a significant relationship to the values students used in the decision-making process. However, neither abstraction of the problem statement nor students’ surveyed value orientations were significantly related to students’ final decisions. These results may help inform teachers’ understanding of students and their use of a structured-decision making tool in a classroom, and aid researchers in understanding if these tools help students remain objective in their analyses of complex SSIs.
Journal of Agricultural Education | 2017
Molly Brandt; Cory T. Forbes; Jenny Keshwani
The public is more disconnected from agriculture than ever. Americans are now two to four generations removed from the farm with a majority of Americans having no direct experience in agriculture. As a result, the public lacks the knowledge and appreciation of the food, fuel, and fiber it demands. The National Agricultural Learning Objectives (NALOs) were recently developed to describe students’ agricultural knowledge but have, as yet, not been used to guide research into students’ agricultural literacy. The purpose of this project is to further understand students’ agricultural literacy through NALO-based assessment of students’ knowledge. This study focused on the NALOs in the areas of agriculture and the environment (AgE) and the STEM dimensions of agriculture (STEM) using a sequential exploratory mixed methods design. Thirty-five students participated in semi-structured interviews surrounding the NALOs. Interview data were coded and analyzed while using the evidence-centered design process to create empirically grounded assessments that were administered to a sample (n=400) of elementary students. Results suggest that students are more knowledgeable about the STEM dimensions of agriculture than the agricultural and environmental topics. Recommendations are provided to guide future research and development around the NALOs.
International Journal of STEM Education | 2017
Kari L. Nelson; Jamie Sabel; Cory T. Forbes; Neal Grandgenett; William E. Tapprich; Christine E. Cutucache
BackgroundMany university students are becoming involved in mentoring programs, yet few studies describe the impact of mentoring on the mentor. Additionally, many studies report that students graduating from college are not prepared to enter the workforce in terms of key career skills and/or content knowledge. Herein, we examine the impact of our program, NE STEM 4U (Nebraska Science, Technology, Engineering and Math for You), in which undergraduate (UG) mentors engage K-8 youth in after-school STEM experiments. The UGs reflected upon their experiences using post-mentoring evaluations, 12- and 24-week interviews, and exit surveys. Many of the questions asked of the mentors related directly to their own professional development, such as self-evaluation of communication, organization, and problem-solving skills, while other questions related to content knowledge and reflection.ResultsPost-mentoring, UGs reflected on the delivery/teaching significantly more (p ≤ 0.001 for each) than other variables (i.e., their own content knowledge gains, the students’ content knowledge gains, scaffolding the lessons, or overall professional growth). By analyzing the evaluations and interviews together, some significant, self-reported gains emerged. For example, 94.15% of the UG reported that the experience was beneficial to their education. Additionally, UG mentors self-reported significant gains (p ≤ 0.01 for each) moving from 12- to 24-weeks in the program in the categories of organization, STEM content knowledge, preparedness to teach, and engagement in the program. However, UG did not report significant gains in dependability. Importantly, when mentors ranked themselves at 24-weeks, they were blinded to (unaware of) the ranking they gave themselves at 12-weeks.ConclusionsThis study helps to fill a gap in the literature by providing insight into the gains UG mentors report attaining after mentoring to K-8 students. These data suggest that participation by UGs in this program promoted self-reflection as well as self-reported gains related to career preparedness and STEM content knowledge.
CBE- Life Sciences Education | 2017
Jaime Sabel; Joseph T. Dauer; Cory T. Forbes
This study examined the use of enhanced answer keys and reflection questions to support introductory biology students to engage in metacognition. The scaffolds supported students to consider their own understanding. Students who received directed instruction on the use of scaffolds had even greater benefit than students who received only the scaffolds.