Cosmas D. Arnold
Research Institute of Molecular Pathology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cosmas D. Arnold.
Science | 2013
Cosmas D. Arnold; Daniel Gerlach; Christoph Stelzer; Łukasz M. Boryń; Martina Rath; Alexander Stark
The Regulatory Genome Multicellular organisms contain a variety of cell types that are morphologically and functionally distinct even though they typically contain the same genomic DNA. Differences stem from differential gene expression. Gene regulatory genomic regions (enhancers) are well studied, yet despite major efforts, such as Encode and modEncode, the number of enhancers in animal genomes and their genomic positions, cell-type specificity, and strengths are largely unknown. Arnold et al. (p. 1074, published online 17 January) report a method, termed STARR-seq, that measures the strength of enhancers genome-wide, giving insight into the organization of the regulatory genome. A map of thousands of Drosophila cell type–specific enhancers is revealed using a new method. Genomic enhancers are important regulators of gene expression, but their identification is a challenge, and methods depend on indirect measures of activity. We developed a method termed STARR-seq to directly and quantitatively assess enhancer activity for millions of candidates from arbitrary sources of DNA, which enables screens across entire genomes. When applied to the Drosophila genome, STARR-seq identifies thousands of cell type–specific enhancers across a broad continuum of strengths, links differential gene expression to differences in enhancer activity, and creates a genome-wide quantitative enhancer map. This map reveals the highly complex regulation of transcription, with several independent enhancers for both developmental regulators and ubiquitously expressed genes. STARR-seq can be used to identify and quantify enhancer activity in other eukaryotes, including humans.
Nature Genetics | 2014
Cosmas D. Arnold; Daniel Gerlach; Daniel Spies; Jessica A. Matts; Yuliya A. Sytnikova; Michaela Pagani; Nelson C. Lau; Alexander Stark
Phenotypic differences between closely related species are thought to arise primarily from changes in gene expression due to mutations in cis-regulatory sequences (enhancers). However, it has remained unclear how frequently mutations alter enhancer activity or create functional enhancers de novo. Here we use STARR-seq, a recently developed quantitative enhancer assay, to determine genome-wide enhancer activity profiles for five Drosophila species in the constant trans-regulatory environment of Drosophila melanogaster S2 cells. We find that the functions of a large fraction of D. melanogaster enhancers are conserved for their orthologous sequences owing to selection and stabilizing turnover of transcription factor motifs. Moreover, hundreds of enhancers have been gained since the D. melanogaster–Drosophila yakuba split about 11 million years ago without apparent adaptive selection and can contribute to changes in gene expression in vivo. Our finding that enhancer activity is often deeply conserved and frequently gained provides functional insights into regulatory evolution.
Nature | 2015
Muhammad A. Zabidi; Cosmas D. Arnold; Katharina Schernhuber; Michaela Pagani; Martina Rath; Olga Frank; Alexander Stark
Gene transcription in animals involves the assembly of RNA polymerase II at core promoters and its cell-type-specific activation by enhancers that can be located more distally. However, how ubiquitous expression of housekeeping genes is achieved has been less clear. In particular, it is unknown whether ubiquitously active enhancers exist and how developmental and housekeeping gene regulation is separated. An attractive hypothesis is that different core promoters might exhibit an intrinsic specificity to certain enhancers. This is conceivable, as various core promoter sequence elements are differentially distributed between genes of different functions, including elements that are predominantly found at either developmentally regulated or at housekeeping genes. Here we show that thousands of enhancers in Drosophila melanogaster S2 and ovarian somatic cells (OSCs) exhibit a marked specificity to one of two core promoters—one derived from a ubiquitously expressed ribosomal protein gene and another from a developmentally regulated transcription factor—and confirm the existence of these two classes for five additional core promoters from genes with diverse functions. Housekeeping enhancers are active across the two cell types, while developmental enhancers exhibit strong cell-type specificity. Both enhancer classes differ in their genomic distribution, the functions of neighbouring genes, and the core promoter elements of these neighbouring genes. In addition, we identify two transcription factors—Dref and Trl—that bind and activate housekeeping versus developmental enhancers, respectively. Our results provide evidence for a sequence-encoded enhancer–core-promoter specificity that separates developmental and housekeeping gene regulatory programs for thousands of enhancers and their target genes across the entire genome.
Genomics | 2015
Felix Muerdter; Łukasz M. Boryń; Cosmas D. Arnold
Differential gene expression is the basis for cell type diversity in multicellular organisms and the driving force of development and differentiation. It is achieved by cell type-specific transcriptional enhancers, which are genomic DNA sequences that activate the transcription of their target genes. Their identification and characterization is fundamental to our understanding of gene regulation. Features that are associated with enhancer activity, such as regulatory factor binding or histone modifications can predict the location of enhancers. Nonetheless, enhancer activity can only be assessed by transcriptional reporter assays. Over the past years massively parallel reporter assays have been developed for large scale testing of enhancers. In this review we focus on the principles and applications of STARR-seq, a functional assay that quantifies enhancer strengths in complex candidate libraries and thus allows activity-based enhancer identification in entire genomes. We explain how STARR-seq works, discuss current uses and give an outlook to future applications.
Nature Biotechnology | 2017
Cosmas D. Arnold; Muhammad A. Zabidi; Michaela Pagani; Martina Rath; Katharina Schernhuber; Tomáš Kazmar; Alexander Stark
Gene expression is controlled by enhancers that activate transcription from the core promoters of their target genes. Although a key function of core promoters is to convert enhancer activities into gene transcription, whether and how strongly they activate transcription in response to enhancers has not been systematically assessed on a genome-wide level. Here we describe self-transcribing active core promoter sequencing (STAP-seq), a method to determine the responsiveness of genomic sequences to enhancers, and apply it to the Drosophila melanogaster genome. We cloned candidate fragments at the position of the core promoter (also called minimal promoter) in reporter plasmids with or without a strong enhancer, transfected the resulting library into cells, and quantified the transcripts that initiated from each candidate for each setup by deep sequencing. In the presence of a single strong enhancer, the enhancer responsiveness of different sequences differs by several orders of magnitude, and different levels of responsiveness are associated with genes of different functions. We also identify sequence features that predict enhancer responsiveness and discuss how different core promoters are employed for the regulation of gene expression.
Nature Methods | 2017
Felix Muerdter; Łukasz M. Boryń; Ashley R. Woodfin; Christoph Neumayr; Martina Rath; Muhammad A. Zabidi; Michaela Pagani; Vanja Haberle; Tomáš Kazmar; Rui R. Catarino; Katharina Schernhuber; Cosmas D. Arnold; Alexander Stark
The identification of transcriptional enhancers in the human genome is a prime goal in biology. Enhancers are typically predicted via chromatin marks, yet their function is primarily assessed with plasmid-based reporter assays. Here, we show that such assays are rendered unreliable by two previously reported phenomena relating to plasmid transfection into human cells: (i) the bacterial plasmid origin of replication (ORI) functions as a conflicting core promoter and (ii) a type I interferon (IFN-I) response is activated. These cause confounding false positives and negatives in luciferase assays and STARR-seq screens. We overcome both problems by employing the ORI as core promoter and by inhibiting two IFN-I-inducing kinases, enabling genome-wide STARR-seq screens in human cells. In HeLa-S3 cells, we uncover strong enhancers, IFN-I-induced enhancers, and enhancers endogenously silenced at the chromatin level. Our findings apply to all episomal enhancer activity assays in mammalian cells and are key to the characterization of human enhancers.
The EMBO Journal | 2018
Cosmas D. Arnold; Filip Nemčko; Ashley R. Woodfin; Sebastian Wienerroither; Anna Vlasova; Alexander Schleiffer; Michaela Pagani; Martina Rath; Alexander Stark
Even though transcription factors (TFs) are central players of gene regulation and have been extensively studied, their regulatory trans‐activation domains (tADs) often remain unknown and a systematic functional characterization of tADs is lacking. Here, we present a novel high‐throughput approach tAD‐seq to functionally test thousands of candidate tADs from different TFs in parallel. The tADs we identify by pooled screening validate in individual luciferase assays, whereas neutral regions do not. Interestingly, the tADs are found at arbitrary positions within the TF sequences and can contain amino acid (e.g., glutamine) repeat regions or overlap structured domains, including helix–loop–helix domains that are typically annotated as DNA‐binding. We also identified tADs in the non‐native reading frames, confirming that random sequences can function as tADs, albeit weakly. The identification of tADs as short protein sequences sufficient for transcription activation will enable the systematic study of TF function, which—particularly for TFs of different transcription activating functionalities—is still poorly understood.
bioRxiv | 2017
Felix Muerdter; Łukasz M. Boryń; Ashley R. Woodfin; Christoph Neumayr; Martina Rath; Muhammad A. Zabidi; Michaela Pagani; Vanja Haberle; Tomáš Kazmar; Rui R. Catarino; Katharina Schernhuber; Cosmas D. Arnold; Alexander Stark
The identification of transcriptional enhancers in the human genome is a prime goal in biology. Enhancers are typically predicted via chromatin marks, yet their function is primarily assessed with plasmid-based reporter assays. Here, we show that two previous observations relating to plasmid-transfection into human cells render such assays unreliable: (1) the function of the bacterial plasmid origin-of-replication (ORI) as a conflicting core-promoter and (2) the activation of a type I interferon (IFN-I) response. These problems cause strongly confounding false-positives and -negatives in luciferase assays and genome-wide STARR-seq screens. We overcome both problems by directly employing the ORI as a core-promoter and by inhibiting two kinases central to IFN-I induction. This corrects luciferase assays and enables genome-wide STARR-seq screens in human cells. Comprehensive enhancer activity profiles in HeLa-S3 cells uncover strong enhancers, IFN-I-induced enhancers, and enhancers endogenously silenced at the chromatin level. Our findings apply to all episomal enhancer activity assays in mammalian cells, and are key to the characterization of human enhancers.
Genome Research | 2014
J. Omar Yáñez-Cuna; Cosmas D. Arnold; Gerald Stampfel; Łukasz M. Boryń; Daniel Gerlach; Martina Rath; Alexander Stark
Molecular Cell | 2014
Daria Shlyueva; Christoph Stelzer; Daniel Gerlach; J. Omar Yáñez-Cuna; Martina Rath; Łukasz M. Boryń; Cosmas D. Arnold; Alexander Stark