Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cosmin Deciu is active.

Publication


Featured researches published by Cosmin Deciu.


Genetics in Medicine | 2011

DNA sequencing of maternal plasma to detect Down syndrome: An international clinical validation study

Glenn E. Palomaki; Edward M. Kloza; Geralyn Lambert-Messerlian; James E. Haddow; Louis M. Neveux; Mathias Ehrich; Dirk van den Boom; Allan T. Bombard; Cosmin Deciu; Wayne W. Grody; Stanley F. Nelson; Jacob A. Canick

Purpose: Prenatal screening for Down syndrome has improved, but the number of resulting invasive diagnostic procedures remains problematic. Measurement of circulating cell-free DNA in maternal plasma might offer improvement.Methods: A blinded, nested case-control study was designed within a cohort of 4664 pregnancies at high risk for Down syndrome. Fetal karyotyping was compared with an internally validated, laboratory-developed test based on next-generation sequencing in 212 Down syndrome and 1484 matched euploid pregnancies. None had been previously tested. Primary testing occurred at a CLIA-certified commercial laboratory, with cross validation by a CLIA-certified university laboratory.Results: Down syndrome detection rate was 98.6% (209/212), the false-positive rate was 0.20% (3/1471), and the testing failed in 13 pregnancies (0.8%); all were euploid. Before unblinding, the primary testing laboratory also reported multiple alternative interpretations. Adjusting chromosome 21 counts for guanine cytosine base content had the largest impact on improving performance.Conclusion: When applied to high-risk pregnancies, measuring maternal plasma DNA detects nearly all cases of Down syndrome at a very low false-positive rate. This method can substantially reduce the need for invasive diagnostic procedures and attendant procedure-related fetal losses. Although implementation issues need to be addressed, the evidence supports introducing this testing on a clinical basis.


Genetics in Medicine | 2012

DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study.

Glenn E. Palomaki; Cosmin Deciu; Edward M. Kloza; Geralyn Lambert-Messerlian; James E. Haddow; Louis M. Neveux; Mathias Ehrich; Dirk van den Boom; Allan T. Bombard; Wayne W. Grody; Stanley F. Nelson; Jacob A. Canick

Purpose:To determine whether maternal plasma cell–free DNA sequencing can effectively identify trisomy 18 and 13.Methods:Sixty-two pregnancies with trisomy 18 and 12 with trisomy 13 were selected from a cohort of 4,664 pregnancies along with matched euploid controls (including 212 additional Down syndrome and matched controls already reported), and their samples tested using a laboratory-developed, next-generation sequencing test. Interpretation of the results for chromosome 18 and 13 included adjustment for CG content bias.Results:Among the 99.1% of samples interpreted (1,971/1,988), observed trisomy 18 and 13 detection rates were 100% (59/59) and 91.7% (11/12) at false-positive rates of 0.28% and 0.97%, respectively. Among the 17 samples without an interpretation, three were trisomy 18. If z-score cutoffs for trisomy 18 and 13 were raised slightly, the overall false-positive rates for the three aneuploidies could be as low as 0.1% (2/1,688) at an overall detection rate of 98.9% (280/283) for common aneuploidies. An independent academic laboratory confirmed performance in a subset.Conclusion:Among high-risk pregnancies, sequencing circulating cell–free DNA detects nearly all cases of Down syndrome, trisomy 18, and trisomy 13, at a low false-positive rate. This can potentially reduce invasive diagnostic procedures and related fetal losses by 95%. Evidence supports clinical testing for these aneuploidies.Genet Med 2012:14(3):296–305


Prenatal Diagnosis | 2012

DNA sequencing of maternal plasma to identify Down syndrome and other trisomies in multiple gestations

Jacob A. Canick; Edward M. Kloza; Geralyn Lambert-Messerlian; James E. Haddow; Mathias Ehrich; Dirk van den Boom; Allan T. Bombard; Cosmin Deciu; Glenn E. Palomaki

Studies on prenatal testing for Down syndrome (trisomy 21), trisomy 18, and trisomy 13 by massively parallel shotgun sequencing (MPSS) of circulating cell free DNA have been, for the most part, limited to singleton pregnancies. If MPSS testing is offered clinically, it is important to know if these trisomies will also be identified in multiple pregnancies.


Prenatal Diagnosis | 2013

Noninvasive prenatal detection of sex chromosomal aneuploidies by sequencing circulating cell-free DNA from maternal plasma

Amin R. Mazloom; Željko Džakula; Paul Oeth; Huiquan Wang; Taylor J. Jensen; John Tynan; Ron McCullough; Juan-Sebastian Saldivar; Mathias Ehrich; Dirk van den Boom; Allan T. Bombard; Margo Maeder; Graham McLennan; Wendy S. Meschino; Glenn E. Palomaki; Jacob A. Canick; Cosmin Deciu

Whole‐genome sequencing of circulating cell free (ccf) DNA from maternal plasma has enabled noninvasive prenatal testing for common autosomal aneuploidies. The purpose of this study was to extend the detection to include common sex chromosome aneuploidies (SCAs): [47,XXX], [45,X], [47,XXY], and [47,XYY] syndromes.


PLOS ONE | 2014

Non-Invasive Prenatal Chromosomal Aneuploidy Testing - Clinical Experience: 100,000 Clinical Samples

Ron McCullough; Eyad Almasri; Xiaojun Guan; Jennifer Geis; Susan C. Hicks; Amin R. Mazloom; Cosmin Deciu; Paul Oeth; Allan T. Bombard; Bill Paxton; Nilesh Dharajiya; Juan-Sebastian Saldivar

Objective As the first laboratory to offer massively parallel sequencing-based noninvasive prenatal testing (NIPT) for fetal aneuploidies, Sequenom Laboratories has been able to collect the largest clinical population experience data to date, including >100,000 clinical samples from all 50 U.S. states and 13 other countries. The objective of this study is to give a robust clinical picture of the current laboratory performance of the MaterniT21 PLUS LDT. Study Design The study includes plasma samples collected from patients with high-risk pregnancies in our CLIA–licensed, CAP-accredited laboratory between August 2012 to June 2013. Samples were assessed for trisomies 13, 18, 21 and for the presence of chromosome Y-specific DNA. Sample data and ad hoc outcome information provided by the clinician was compiled and reviewed to determine the characteristics of this patient population, as well as estimate the assay performance in a clinical setting. Results NIPT patients most commonly undergo testing at an average of 15 weeks, 3 days gestation; and average 35.1 years of age. The average turnaround time is 4.54 business days and an overall 1.3% not reportable rate. The positivity rate for Trisomy 21 was 1.51%, followed by 0.45% and 0.21% rate for Trisomies 18 and 13, respectively. NIPT positivity rates are similar to previous large clinical studies of aneuploidy in women of maternal age ≥35 undergoing amniocentesis. In this population 3519 patients had multifetal gestations (3.5%) with 2.61% yielding a positive NIPT result. Conclusion NIPT has been commercially offered for just over 2 years and the clinical use by patients and clinicians has increased significantly. The risks associated with invasive testing have been substantially reduced by providing another assessment of aneuploidy status in high-risk patients. The accuracy and NIPT assay positivity rate are as predicted by clinical validations and the test demonstrates improvement in the current standard of care.


PLOS ONE | 2013

High-throughput massively parallel sequencing for fetal aneuploidy detection from maternal plasma.

Taylor J. Jensen; Tricia Zwiefelhofer; Roger Tim; Željko Džakula; Sung K. Kim; Amin R. Mazloom; Zhanyang Zhu; John Tynan; Tim Lu; Graham McLennan; Glenn E. Palomaki; Jacob A. Canick; Paul Oeth; Cosmin Deciu; Dirk van den Boom; Mathias Ehrich

Background Circulating cell-free (ccf) fetal DNA comprises 3–20% of all the cell-free DNA present in maternal plasma. Numerous research and clinical studies have described the analysis of ccf DNA using next generation sequencing for the detection of fetal aneuploidies with high sensitivity and specificity. We sought to extend the utility of this approach by assessing semi-automated library preparation, higher sample multiplexing during sequencing, and improved bioinformatic tools to enable a higher throughput, more efficient assay while maintaining or improving clinical performance. Methods Whole blood (10mL) was collected from pregnant female donors and plasma separated using centrifugation. Ccf DNA was extracted using column-based methods. Libraries were prepared using an optimized semi-automated library preparation method and sequenced on an Illumina HiSeq2000 sequencer in a 12-plex format. Z-scores were calculated for affected chromosomes using a robust method after normalization and genomic segment filtering. Classification was based upon a standard normal transformed cutoff value of z = 3 for chromosome 21 and z = 3.95 for chromosomes 18 and 13. Results Two parallel assay development studies using a total of more than 1900 ccf DNA samples were performed to evaluate the technical feasibility of automating library preparation and increasing the sample multiplexing level. These processes were subsequently combined and a study of 1587 samples was completed to verify the stability of the process-optimized assay. Finally, an unblinded clinical evaluation of 1269 euploid and aneuploid samples utilizing this high-throughput assay coupled to improved bioinformatic procedures was performed. We were able to correctly detect all aneuploid cases with extremely low false positive rates of 0.09%, <0.01%, and 0.08% for trisomies 21, 18, and 13, respectively. Conclusions These data suggest that the developed laboratory methods in concert with improved bioinformatic approaches enable higher sample throughput while maintaining high classification accuracy.


Prenatal Diagnosis | 2015

Circulating cell free DNA testing: are some test failures informative?

Glenn E. Palomaki; EdwardM. Kloza; Geralyn Lambert-Messerlian; D. van den Boom; Mathias Ehrich; Cosmin Deciu; Allan T. Bombard; James E. Haddow

The proportion of circulating cell free DNA derived from the feto‐placental unit (fetal fraction or FF) correlates with test success and interpretation reliability. Some fetal disorders are associated with systematically lower FF, sometimes resulting in noninformative results.


Prenatal Diagnosis | 2015

Factors affecting levels of circulating cell‐free fetal DNA in maternal plasma and their implications for noninvasive prenatal testing

Sarah L. Kinnings; Jennifer Geis; Eyad Almasri; Huiquan Wang; Xiaojun Guan; Ron McCullough; Allan T. Bombard; Juan-Sebastian Saldivar; Paul Oeth; Cosmin Deciu

Sufficient fetal DNA in a maternal plasma sample is required for accurate aneuploidy detection via noninvasive prenatal testing, thus highlighting a need to understand the factors affecting fetal fraction.


Genetics in Medicine | 2014

Maternal plasma DNA testing for aneuploidy in pregnancies achieved by assisted reproductive technologies

Geralyn Lambert-Messerlian; Edward M. Kloza; John Williams; Jaroslav Loucky; Barbara M. O’Brien; Louise Wilkins-Haug; Maurice J. Mahoney; Pierangela De Biasio; Antoni Borrell; Mathias Ehrich; Dirk van den Boom; Allan T. Bombard; Cosmin Deciu; Glenn E. Palomaki

Purpose:We sought to compare measurements of circulating cell-free DNA as well as Down syndrome test results in women with naturally conceived pregnancies with those conceived using assisted reproductive technologies.Methods:Data regarding assisted reproductive technologies were readily available from seven enrollment sites participating in an external clinical validation trial of nested case/control design. Measurements of circulating cell-free fetal and total DNA, fetal fraction (ratio of fetal to total DNA), chromosome-specific z-scores, and karyotype results were available for analysis.Results:Analyses were restricted to 632 euploid (5.2% assisted reproductive technologies) and 73 Down syndrome (13.7% assisted reproductive technologies), including 16 twin pregnancies. No differences were found for fetal or total circulating cell-free DNA, or for the fetal fraction in euploid (P = 0.70) or Down syndrome (P = 0.58) pregnancies by method of conception. There appeared to be systematic z-score reductions for chromosomes 21, 18, and 13 in assisted reproductive technologies versus natural euploid pregnancies (P = 0.048, 0.0032, and 0.36, respectively).Conclusion:Assisted reproductive technologies and naturally conceived pregnancies contribute similar levels of circulating cell-free DNA into maternal circulation. Small differences in the z-scores of pregnancies achieved by assisted reproductive technologies were observed and do not appear to be test-related artifacts. However, the findings need confirmation before any consideration of changes to testing and reporting protocols.Genet Med 16 5, 419–422.


Archive | 2013

Diagnostic processes that factor experimental conditions

Cosmin Deciu; Mathias Ehrich; Den Boom Dirk Johannes Van; Zeljko Dzakula

Collaboration


Dive into the Cosmin Deciu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge