Cosmin Stroe
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cosmin Stroe.
very large data bases | 2009
Isabel F. Cruz; Flavio Palandri Antonelli; Cosmin Stroe
We present the AgreementMaker system for matching real-world schemas and ontologies, which may consist of hundreds or even thousands of concepts. The end users of the system are sophisticated domain experts whose needs have driven the design and implementation of the system: they require a responsive, powerful, and extensible framework to perform, evaluate, and compare matching methods. The system comprises a wide range of matching methods addressing different levels of granularity of the components being matched (conceptual vs. structural), the amount of user intervention that they require (manual vs. automatic), their usage (stand-alone vs. composed), and the types of components to consider (schema only or schema and instances). Performance measurements (recall, precision, and runtime) are supported by the system, along with the weighted combination of the results provided by those methods. The AgreementMaker has been used and tested in practical applications and in the Ontology Alignment Evaluation Initiative (OAEI) competition. We report here on some of its most advanced features, including its extensible architecture that facilitates the integration and performance tuning of a variety of matching methods, its capability to evaluate, compare, and combine matching results, and its user interface with a control panel that drives all the matching methods and evaluation strategies.
international conference on data engineering | 2012
Isabel F. Cruz; Cosmin Stroe; Matteo Palmonari
When compared to a gold standard, the set of mappings that are generated by an automatic ontology matching process is neither complete nor are the individual mappings always correct. However, given the explosion in the number, size, and complexity of available ontologies, domain experts no longer have the capability to create ontology mappings without considerable effort. We present a solution to this problem that consists of making the ontology matching process interactive so as to incorporate user feedback in the loop. Our approach clusters mappings to identify where user feedback will be most beneficial in reducing the number of user interactions and system iterations. This feedback process has been implemented in the Agreement Maker system and is supported by visual analytic techniques that help users to better understand the matching process. Experimental results using the OAEI benchmarks show the effectiveness of our approach. We will demonstrate how users can interact with the ontology matching process through the Agreement Maker user interface to match real-world ontologies.
Artificial Intelligence Review | 2013
Isabel F. Cruz; Matteo Palmonari; Federico Caimi; Cosmin Stroe
The creation of links between schemas of published datasets is a key part of the Linked Open Data (LOD) paradigm. The ability to discover these links “on the go” requires that ontology matching techniques achieve good precision and recall within acceptable execution times. In this paper, we add similarity-based and mediator-based ontology matching methods to the Agreementmaker ontology matching system, which aim to efficiently discover high precision subclass mappings between LOD ontologies. Similarity-based matching methods discover subclass mappings by extrapolating them from a set of high quality equivalence mappings and from the interpretation of compound concept names. Mediator-based matching methods discover subclass mappings by comparing polysemic lexical annotations of ontology concepts and by considering external web ontologies. Experiments show that when compared with a leading LOD approach, Agreementmaker achieves considerably higher precision and F-measure, at the cost of a slight decrease in recall.
international semantic web conference | 2012
Isabel F. Cruz; Alessio Fabiani; Federico Caimi; Cosmin Stroe; Matteo Palmonari
An ontology matching system can usually be run with different configurations that optimize the systems effectiveness, namely precision, recall, or F-measure, depending on the specific ontologies to be aligned. Changing the configuration has potentially high impact on the obtained results. We apply matching task profiling metrics to automatically optimize the systems configuration depending on the characteristics of the ontologies to be matched. Using machine learning techniques, we can automatically determine the optimal configuration in most cases. Even using a small training set, our system determines the best configuration in 94% of the cases. Our approach is evaluated using the AgreementMaker ontology matching system, which is extensible and configurable.
international semantic web conference | 2013
Catia Pesquita; Daniel Faria; Cosmin Stroe; Emanuel Santos; Isabel F. Cruz; Francisco M. Couto
To bring the Life Sciences domain closer to a Semantic Web realization it is fundamental to establish meaningful relations between biomedical ontologies. The successful application of ontology matching techniques is strongly tied to an effective exploration of the complex and diverse biomedical terminology contained in biomedical ontologies. In this paper, we present an overview of the lexical components of several biomedical ontologies and investigate how different approaches for their use can impact the performance of ontology matching techniques. We propose novel approaches for exploring the different types of synonyms encoded by the ontologies and for extending them based both on internal synonym derivation and on external ontologies. We evaluate our approaches using AgreementMaker, a successful ontology matching platform that implements several lexical matchers, and apply them to a set of four benchmark biomedical ontology matching tasks. Our results demonstrate the impact that an adequate consideration of ontology synonyms can have on matching performance, and validate our novel approach for combining internal and external synonym sources as a competitive and in many cases improved solution for biomedical ontology matching.
knowledge acquisition, modeling and management | 2014
Isabel F. Cruz; Francesco Loprete; Matteo Palmonari; Cosmin Stroe; Aynaz Taheri
Using our multi-user model, a community of users provides feedback in a pay-as-you-go fashion to the ontology matching process by validating the mappings found by automatic methods, with the following advantages over having a single user: the effort required from each user is reduced, user errors are corrected, and consensus is reached. We propose strategies that dynamically determine the order in which the candidate mappings are presented to the users for validation. These strategies are based on mapping quality measures that we define. Further, we use a propagation method to leverage the validation of one mapping to other mappings. We use an extension of the AgreementMaker ontology matching system and the Ontology Alignment Evaluation Initiative (OAEI) Benchmarks track to evaluate our approach. Our results show how Fmeasure and robustness vary as a function of the number of user validations. We consider different user error and revalidation rates (the latter measures the number of times that the same mapping is validated). Our results highlight complex trade-offs and point to the benefits of dynamically adjusting the revalidation rate.
Sprachwissenschaft | 2016
Isabel F. Cruz; Matteo Palmonari; Francesco Loprete; Cosmin Stroe; Aynaz Taheri
Using a pay-as-you-go strategy, we allow for a community of users to validate mappings obtained by an automatic ontology matching system using consensus for each mapping. The ultimate objectives are effectiveness—improving the quality of the obtained alignment (set of mappings) measured in terms of F-measure as a function of the number of user interactions—and robustness—making the system as much as possible impervious to user validation errors. Our strategy consisting of two major steps: candidate mapping selection, which ranks mappings based on their perceived quality, so as to present first to the users those mappings with lowest quality, and feedback propagation, which seeks to validate or invalidate those mappings that are perceived to be “similar” to the mappings already presented to the users. The purpose of these two strategies is twofold: achieve greater improvements earlier and minimize overall user interaction. There are three important features of our approach. The first is that we use a dynamic ranking mechanism to adapt to the new conditions after each user interaction, the second is that we may need to present each mapping for validation more than once—revalidation—because of possible user errors, and the third is that we propagate a user’s input on a mapping immediately without first achieving consensus for that mapping. We study extensively the effectiveness and robustness of our approach as several of these parameters change, namely the error and revalidation rates, as a function of the number of iterations, to provide conclusive guidelines for the design and implementation of multi-user feedback ontology matching systems.
international conference on ontology matching | 2010
Isabel F. Cruz; Cosmin Stroe; Federico Caimi; Alessio Fabiani; Catia Pesquita; Francisco M. Couto; Matteo Palmonari
ISWC | 2008
Isabel F. Cruz; Flavio Palandri Antonelli; Cosmin Stroe
LHD'11 Proceedings of the 2011 International Conference on Discovering Meaning On the Go in Large Heterogeneous Data | 2011
Isabel F. Cruz; Matteo Palmonari; Federico Caimi; Cosmin Stroe