Costas Batargias
Technological Educational Institute of Messolonghi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Costas Batargias.
Animal Genetics | 2009
C. Massault; Bart Hellemans; Bruno Louro; Costas Batargias; J. Van Houdt; Adelino V. M. Canario; F. A. M. Volckaert; H. Bovenhuis; Chris Haley; Dirk-Jan de Koning
Natural mating and mass spawning in the European sea bass (Dicentrarchus labrax L., Moronidae, Teleostei) complicate genetic studies and the implementation of selective breeding schemes. We utilized a two-step experimental design for detecting QTL in mass-spawning species: 2122 offspring from natural mating between 57 parents (22 males, 34 females and one missing) phenotyped for body weight, eight morphometric traits and cortisol levels, had been previously assigned to parents based on genotypes of 31 DNA microsatellite markers. Five large full-sib families (five sires and two dams) were selected from the offspring (570 animals), which were genotyped with 67 additional markers. A new genetic map was compiled, specific to our population, but based on the previously published map. QTL mapping was performed with two methods: half-sib regression analysis (paternal and maternal) and variance component analysis accounting for all family relationships. Two significant QTL were found for body weight on linkage group 4 and 6, six significant QTL for morphometric traits on linkage groups 1B, 4, 6, 7, 15 and 23 and three suggestive QTL for stress response on linkage groups 3, 14 and 23. The QTL explained between 8% and 38% of phenotypic variance. The results are the first step towards identifying genes involved in economically important traits like body weight and stress response in European sea bass.
PLOS ONE | 2011
Dimitrios Loukovitis; Elena Sarropoulou; Costas S. Tsigenopoulos; Costas Batargias; Antonios Magoulas; Apostolos P. Apostolidis; D. Chatziplis; Georgios Kotoulas
Among vertebrates, teleost fish exhibit a considerably wide range of sex determination patterns that may be influenced by extrinsic parameters. However even for model fish species like the zebrafish Danio rerio the precise mechanisms involved in primary sex determination have not been studied extensively. The zebrafish, a gonochoristic species, is lacking discernible sex chromosomes and the sex of juvenile fish is difficult to determine. Sequential protandrous hermaphrodite species provide distinct determination of the gender and allow studying the sex determination process by looking at the mechanism of sex reversal. This is the first attempt to understand the genetic basis of phenotypic variation for sex determination and body weight in a sequential protandrous hermaphrodite species, the gilthead sea bream (Sparus aurata). This work demonstrates a fast and efficient strategy for Quantitative Trait Loci (QTL) detection in the gilthead sea bream, a non-model but target hermaphrodite fish species. Therefore a comparative mapping approach was performed to query syntenies against two other Perciformes, the European sea bass (Dicentrarchus labrax), a gonochoristic species and the Asian sea bass (Lates calcarifer) a protandrous hermaphrodite. In this manner two significant QTLs, one QTL affecting both body weight and sex and one QTL affecting sex, were detected on the same linkage group. The co-segregation of the two QTLs provides a genomic base to the observed genetic correlation between these two traits in sea bream as well as in other teleosts. The identification of QTLs linked to sex reversal and growth, will contribute significantly to a better understanding of the complex nature of sex determination in S. aurata where most individuals reverse to the female sex at the age of two years through development and maturation of the ovarian portion of the gonad and regression of the testicular area. [Genomic sequences reported in this manuscript have been submitted to GenBank under accession numbers HQ021443–HQ021749.]
Animal Genetics | 2012
Dimitrios Loukovitis; Elena Sarropoulou; Costas Batargias; Apostolos P. Apostolidis; Georgios Kotoulas; Costas S. Tsigenopoulos; D. Chatziplis
Gilthead sea bream (Sparus aurata L.) is an important marine fish in Mediterranean aquaculture. Sex determination by age and/or body weight is a critical life-history trait, the genetic basis for which is largely unknown in this sequential hermaphrodite species. Herein, we performed a partial genome scan to map quantitative trait loci (QTL) affecting body weight and sex using 74 informative microsatellite markers from 10 paternal half-sib families to construct nine linkage groups (LG). In total, four growth-related QTL (two chromosome-wide and two genome-wide) and six QTL related to sex determination (three pairs in three different LGs) were detected (two chromosome-wide and one genome-wide). The proportion of phenotypic variation explained by the body-weight QTL ranged from 9.3% to 17.2%, showing their potential for use in marker-assisted selection. The results obtained offer solid ground to investigate the structure and function of the genomic regions involved in the mechanisms of sex reversal.
Genetics Selection Evolution | 2012
Filip Volckaert; Bart Hellemans; Costas Batargias; Bruno Louro; C. Massault; Jeroen Van Houdt; Chris Haley; Dirk-Jan de Koning; Adelino V. M. Canario
BackgroundIn fish, the most studied production traits in terms of heritability are body weight or growth, stress or disease resistance, while heritability of cortisol levels, widely used as a measure of response to stress, is less studied. In this study, we have estimated heritabilities of two growth traits (body weight and length) and of cortisol response to confinement stress in the European sea bass.FindingsThe F1 progeny analysed (n = 922) belonged to a small effective breeding population with contributions from an unbalanced family structure of just 10 males and 2 females. Heritability values ranged from 0.54 (±0.21) for body weight to 0.65 (±0.22) for standard body length and were low for cortisol response i.e. 0.08 (±0.06). Genetic correlations were positive (0.94) between standard body length and body weight and negative between cortisol and body weight and between cortisol and standard body length (−0.60 and −0.55, respectively).ConclusionThis study confirms that in European sea bass, heritability of growth-related traits is high and that selection on such traits has potential. However, heritability of cortisol response to stress is low in European sea bass and since it is known to vary greatly among species, further studies are necessary to understand the reasons for these differences.
Archive | 2008
F. A. M. Volckaert; Costas Batargias; Adelino V. M. Canario; D. Chatziplis; Dimitry A. Chistiakov; Chris Haley; Angelo Libertini; Costas S. Tsigenopoulos
Aquaculture of European sea bass (Dicentrarchus labrax L.) has taken off in the coastal regions of the Mediterranean Sea and southeastern Atlantic Ocean over the past 25 years and increased to 71,649 metric tons in 2004. Genetic support for this industry was initially limited to cytogenetics and population genetics, but with time it has been complemented with selective breeding, as well as functional and comparative genomics. The haploid genome of sea bass consists of 24 chromosomes, weighing 0.78 pg and containing approximately 1,525 Mb. A number of different types of genetic markers are available. A first-generation linkage map based on 174 microsatellite markers covers 25 linkage groups (815 cM). A draft of an updated linkage map, including 369 microsatellite and AFLP markers, is now available. EST resources based on at least 17 cDNA tissue libraries and surpassing 30,000 sequence traces have been generated. A large insert BAC library has a 13× genomic coverage. Breeding goals have been established and heritability values of various traits measured. Functional genomic analysis in relation to the reproductive biology and stress physiology are in progress. A pilot analysis has detected a QTL for body length on the terminal end of linkage group 1. All these resources bring European sea bass into the group of the top ten genome resource-rich fish species. Additional genomic resources such as EST sequences, macro- and micro-arrays, a second-generation linkage map, and physical maps based on BAC fingerprints and radiation hybrids will become available in the near future. Selective breeding of this species is expected to direct it progressively toward complete domestication.
Marine Biodiversity Records | 2012
Sotiris Kiparissis; Dimitris Loukovitis; Costas Batargias
A single specimen of Bermuda sea chub Kyphosus saltatrix was caught in the Ionian Sea (western Greece). It is the first occurrence of this species in Greek waters and it constitutes its easternmost verified distribution in the Mediterranean. The specimen was a 4-year old male, fully adapted to benthic life and its occurrence adds to the increasing rate of detections of this species in the basin during the last decades.
Molecular Ecology | 1999
Costas Batargias; Emmanouil T. Dermitzakis; Antonios Magoulas; Eleftherios Zouros
Aquaculture | 2007
D. Chatziplis; Costas Batargias; Constantinos S. Tsigenopoulos; Antonios Magoulas; Spyros Kollias; Georgios Kotoulas; Filip Volckaert; Chris Haley
Aquaculture | 2011
Kay Boulton; C. Massault; Ross Houston; Dirk-Jan de Koning; Chris Haley; H. Bovenhuis; Costas Batargias; Adelino V. M. Canario; G Kotoulas; Costas S. Tsigenopoulos
Diseases of Aquatic Organisms | 2002
H. Kvitt; M. Ucko; A. Colorni; Costas Batargias; A. Zlotkin; W. Knibb
Collaboration
Dive into the Costas Batargias's collaboration.
Alexander Technological Educational Institute of Thessaloniki
View shared research outputs