Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Courteney Lai is active.

Publication


Featured researches published by Courteney Lai.


Cancer Cell | 2011

INHIBITION OF MITOCHONDRIAL TRANSLATION AS A THERAPEUTIC STRATEGY FOR HUMAN ACUTE MYELOID LEUKEMIA

Marko Skrtic; Shrivani Sriskanthadevan; Bozhena Jhas; Marinella Gebbia; Xiaoming Wang; Zezhou Wang; Rose Hurren; Yulia Jitkova; Marcela Gronda; Neil MacLean; Courteney Lai; Yanina Eberhard; Justyna Bartoszko; Paul A. Spagnuolo; Angela Rutledge; Alessandro Datti; Troy Ketela; Jason Moffat; Brian H. Robinson; Jessie H. Cameron; Jeffery L. Wrana; Connie J. Eaves; Mark D. Minden; Jean C.Y. Wang; John E. Dick; Keith Humphries; Corey Nislow; Guri Giaever; Aaron D. Schimmer

To identify FDA-approved agents targeting leukemic cells, we performed a chemical screen on two human leukemic cell lines and identified the antimicrobial tigecycline. A genome-wide screen in yeast identified mitochondrial translation inhibition as the mechanism of tigecycline-mediated lethality. Tigecycline selectively killed leukemia stem and progenitor cells compared to their normal counterparts and also showed antileukemic activity in mouse models of human leukemia. ShRNA-mediated knockdown of EF-Tu mitochondrial translation factor in leukemic cells reproduced the antileukemia activity of tigecycline. These effects were derivative of mitochondrial biogenesis that, together with an increased basal oxygen consumption, proved to be enhanced in AML versus normal hematopoietic cells and were also important for their difference in tigecycline sensitivity.


Blood | 2009

Modeling the functional heterogeneity of leukemia stem cells: role of STAT5 in leukemia stem cell self-renewal

Michael Heuser; Laura M. Sly; Bob Argiropoulos; Florian Kuchenbauer; Courteney Lai; Andrew P. Weng; Malina Leung; Grace Lin; Christy Brookes; Stephen Fung; Ruud Delwel; Bob Löwenberg; Gerald Krystal; R. Keith Humphries

Although the cancer stem cell (CSC) concept implies that CSCs are rare, recent reports suggest that CSCs may be frequent in some cancers. We hypothesized that the proportion of leukemia stem cells would vary as a function of the number of dysregulated pathways. Constitutive expression of MN1 served as a 1-oncogene model, and coexpression of MN1 and a HOX gene served as a 2-oncogene model. Leukemia-initiating cell (LIC) number and in vitro expansion potential of LICs were functionally assessed by limiting dilution analyses. LIC expansion potential was 132-fold increased in the 2- compared with the 1-oncogene model, although phenotypically, both leukemias were similar. The 2-oncogene model was characterized by granulocyte-macrophage colony-stimulating factor (GM-CSF) hypersensitivity and activated STAT/ERK signaling. GM-CSF hypersensitivity of the 2-oncogene model (MN1/HOXA9) was lost in Stat5b(-/-) cells, and the LIC expansion potential was reduced by 86- and 28-fold in Stat5b(-/-) and Stat1(-/-) cells, respectively. Interestingly, in 201 acute myeloid leukemia (AML) patients, coexpression of MN1 and HOXA9 was restricted to patients with the poorest prognosis and was associated with highly active STAT signaling. Our data demonstrate the functional heterogeneity of LICs and show that STAT signaling is critical for leukemia stem cell self-renewal in MN1- and HOXA9-expressing leukemias.


Cancer Cell | 2011

Cell of Origin in AML: Susceptibility to MN1-Induced Transformation Is Regulated by the MEIS1/AbdB-like HOX Protein Complex

Michael Heuser; Haiyang Yun; Tobias Berg; Eric Yung; Bob Argiropoulos; Florian Kuchenbauer; Gyeongsin Park; Iyas Hamwi; Lars Palmqvist; Courteney Lai; Malina Leung; Grace Lin; Anuhar Chaturvedi; Basant Kumar Thakur; Masayuki Iwasaki; Mikhail Bilenky; Nina Thiessen; Gordon Robertson; Martin Hirst; David G. Kent; Nicola K. Wilson; Bertie Gottgens; Connie J. Eaves; Michael L. Cleary; Marco A. Marra; Arnold Ganser; R. Keith Humphries

Pathways defining susceptibility of normal cells to oncogenic transformation may be valuable therapeutic targets. We characterized the cell of origin and its critical pathways in MN1-induced leukemias. Common myeloid (CMP) but not granulocyte-macrophage progenitors (GMP) could be transformed by MN1. Complementation studies of CMP-signature genes in GMPs demonstrated that MN1-leukemogenicity required the MEIS1/AbdB-like HOX-protein complex. ChIP-sequencing identified common target genes of MN1 and MEIS1 and demonstrated identical binding sites for a large proportion of their chromatin targets. Transcriptional repression of MEIS1 targets in established MN1 leukemias demonstrated antileukemic activity. As MN1 relies on but cannot activate expression of MEIS1/AbdB-like HOX proteins, transcriptional activity of these genes determines cellular susceptibility to MN1-induced transformation and may represent a promising therapeutic target.


Blood | 2014

A transgenic mouse model demonstrating the oncogenic role of mutations in the polycomb-group gene EZH2 in lymphomagenesis

Tobias Berg; Silvia Thoene; Damian Yap; Tracee Wee; Nathalie Schoeler; Patty Rosten; Emilia L. Lim; Misha Bilenky; Andy Mungall; Thomas Oellerich; Sam Lee; Courteney Lai; Patricia Umlandt; Anisa Salmi; Harry Chang; Lisa Yue; Daniel Lai; S. W. G. Cheng; Ryan D. Morin; Martin Hirst; Hubert Serve; Marco A. Marra; Gregg B. Morin; Randy D. Gascoyne; Sam Aparicio; R K Humphries

The histone methyltransferase EZH2 is frequently mutated in germinal center-derived diffuse large B-cell lymphoma and follicular lymphoma. To further characterize these EZH2 mutations in lymphomagenesis, we generated a mouse line where EZH2(Y641F) is expressed from a lymphocyte-specific promoter. Spleen cells isolated from the transgenic mice displayed a global increase in trimethylated H3K27, but the mice did not show an increased tendency to develop lymphoma. As EZH2 mutations often coincide with other mutations in lymphoma, we combined the expression of EZH2(Y641F) by crossing these transgenic mice with Eµ-Myc transgenic mice. We observed a dramatic acceleration of lymphoma development in this combination model of Myc and EZH2(Y641F). The lymphomas show histologic features of high-grade disease with a shift toward a more mature B-cell phenotype, increased cycling and gene expression, and epigenetic changes involving important pathways in B-cell regulation and function. Furthermore, they initiate disease in secondary recipients. In summary, EZH2(Y641F) can collaborate with Myc to accelerate lymphomagenesis demonstrating a cooperative role of EZH2 mutations in oncogenesis. This murine lymphoma model provides a new tool to study global changes in the epigenome caused by this frequent mutation and a promising model system for testing novel treatments.


Leukemia Research | 2011

Delineating domains and functions of NUP98 contributing to the leukemogenic activity of NUP98-HOX fusions.

Eric Yung; Sanja Sekulovic; Bob Argiropoulos; Courteney Lai; Malina Leung; Tobias Berg; Sarah Vollett; Vicky Chi-Dan Chang; Adrian Wan; Sandy Wong; R. Keith Humphries

To determine the contribution of the common N-terminal truncation of NUP98 in NUP98-translocations resulting in acute myeloid leukemia, we have conducted a structure-function analysis of NUP98 in the context of NUP98-HOXA10HD, a novel, canonical NUP98-Hox fusion that significantly enhances the self-renewal capacity of hematopoietic stem cells and collaborates with Meis1 to induce AML in our mouse models. Our results identify that NUP98 functions by transcriptional activation likely by recruitment of CBP/p300 via its FG/GLFG repeats. In contrast, the functional interaction of NUP98 with Rae1 or the anaphase promoting complex appears non-essential for its role in NUP98-leukemogenic fusions.


PLOS ONE | 2016

Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion

Michelle Miller; Patty Rosten; Madeleine E. Lemieux; Courteney Lai; R. Keith Humphries

Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1’s importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1’s functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sortm1(Cre/ERT)Nat/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1’s role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation.


Experimental Hematology | 2010

Extrinsic signals determine myeloid-erythroid lineage switch in MN1 leukemia

Michael Heuser; Gyeongsin Park; Yeonsook Moon; Tobias Berg; Ping Xiang; Florian Kuchenbauer; Sarah Vollett; Courteney Lai; R. Keith Humphries

OBJECTIVE Transcriptional control of hematopoietic lineage fate relies on the integration of many intra- and extracellular signals. To test whether the microenvironment impacts on leukemic phenotype, we exploited the MN1 model of acute myeloid leukemia under defined genetically modified microenvironmental conditions. MATERIALS AND METHODS The requirement of both FLT3 and c-Kit signaling for MN1 leukemias was investigated using retroviral infection of bone marrow cells from wild-type, c-Kit-mutated (W41), and Flt3-ligand knockout cells, and bone marrow transplantation into wild-type, c-Kit-mutated, or Flt3-ligand knockout mice. RESULTS Genetic disruption of both FLT3 and c-Kit signaling in the MN1-leukemia model was dispensable for MN1-induced leukemogenesis. However, it induced a switch from myeloid to erythroid phenotype that was preserved, when FLT3 signaling was restored by secondary transplantation of leukemic cells into wild-type recipients. CONCLUSIONS Our findings underscore the importance of microenvironmental signals for lineage choice in leukemia and identify signals that are important in myeloid-erythroid lineage decisions.


Molecular therapy. Methods & clinical development | 2017

Lentiviral Fluorescent Genetic Barcoding for Multiplex Fate Tracking of Leukemic Cells

Tobias Maetzig; Jens Ruschmann; Lea Sanchez Milde; Courteney Lai; Niklas von Krosigk; R. Keith Humphries

Tracking the behavior of leukemic samples both in vitro and in vivo plays an increasingly large role in efforts to better understand the leukemogenic processes and the effects of potential new therapies. Such work can be accelerated and made more efficient by methodologies enabling the characterization of leukemia samples in multiplex assays. We recently developed three sets of lentiviral fluorescent genetic barcoding (FGB) vectors that create 26, 14, and 6 unique immunophenotyping-compatible color codes from GFP-, yellow fluorescent protein (YFP)-, and monomeric kusabira orange 2 (mKO2)-derived fluorescent proteins. These vectors allow for labeling and tracking of individual color-coded cell populations in mixed samples by real-time flow cytometry. Using the prototypical Hoxa9/Meis1 murine model of acute myeloid leukemia, we describe the application of the 6xFGB vector system for assessing leukemic cell characteristics in multiplex assays. By transplanting color-coded cell mixes, we investigated the competitive growth behavior of individual color-coded populations, determined leukemia-initiating cell frequencies, and assessed the dose-dependent potential of cells exposed to the histone deacetylase inhibitor Entinostat for bone marrow homing. Thus, FGB provides a useful tool for the multiplex characterization of leukemia samples in a wide variety of applications with a concomitant reduction in workload, processing times, and mouse utilization.


Current Cancer Drug Targets | 2016

Pyrimethamine as a Potent and Selective Inhibitor of Acute Myeloid Leukemia Identified by High-throughput Drug Screening

Amit Sharma; Nidhi Jyotsana; Courteney Lai; Anuhar Chaturvedi; Razif Gabdoulline; Kerstin Görlich; Cecilia Murphy; Jan E. Blanchard; Arnold Ganser; Eric D. Brown; John A. Hassell; R. Keith Humphries; Michael Morgan; Michael Heuser

Hematopoietic stem and progenitor cell differentiation are blocked in acute myeloid leukemia (AML) resulting in cytopenias and a high risk of death. Most patients with AML become resistant to treatment due to lack of effective cytotoxic and differentiation promoting compounds. High MN1 expression confers poor prognosis to AML patients and induces resistance to cytarabine and alltrans-retinoic acid (ATRA) induced differentiation. Using a high-throughput drug screening, we identified the dihydrofolate reductase (DHFR) antagonist pyrimethamine to be a potent inducer of apoptosis and differentiation in several murine and human leukemia cell lines. Oral pyrimethamine treatment was effective in two xenograft mouse models and specifically targeted leukemic cells in human AML cell lines and primary patient cells, while CD34+ cells from healthy donors were unaffected. The antileukemic effects of PMT could be partially rescued by excess folic acid, suggesting an oncogenic function of folate metabolism in AML. Thus, our study identifies pyrimethamine as a candidate drug that should be further evaluated in AML treatment.


Blood Advances | 2017

A knock-in mouse strain facilitates dynamic tracking and enrichment of MEIS1

Ping Xiang; Wei Wei; Nicole Hofs; Jack Clemans-Gibbon; Tobias Maetzig; Courteney Lai; Ishpreet Dhillon; Christopher May; Jens Ruschmann; Edith Schneider; Patricia M. Rosten; Kaiji Hu; Florian Kuchenbauer; Pamela A. Hoodless; R. Keith Humphries

Myeloid ecotropic viral integration site 1 (MEIS1), a HOX transcription cofactor, is a critical regulator of normal hematopoiesis, and its overexpression is implicated in a wide range of leukemias. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) gene-editing system, we generated a knock-in transgenic mouse line in which a green fluorescent protein (GFP) reporter and a hemagglutinin (HA) epitope tag are inserted near the translational start site of endogenous Meis1. This novel reporter strain readily enables tracking of MEIS1 expression at single-cell-level resolution via the fluorescence reporter GFP, and facilitates MEIS1 detection and purification via the HA epitope tag. This new Meis1 reporter mouse line provides powerful new approaches to track Meis1-expressing hematopoietic cells and to explore Meis1 function and regulation during normal and leukemic hematopoiesis.

Collaboration


Dive into the Courteney Lai's collaboration.

Top Co-Authors

Avatar

R. Keith Humphries

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Berg

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bob Argiropoulos

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge