Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Courtney D. DiNardo is active.

Publication


Featured researches published by Courtney D. DiNardo.


Leukemia | 2014

Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents

Hui Yang; Carlos E. Bueso-Ramos; Courtney D. DiNardo; Marcos R. Estecio; Masoud Davanlou; Qirong Geng; Zhihong Fang; Martin Nguyen; Sherry Pierce; Yue Wei; Simrit Parmar; Jorge Cortes; Hagop M. Kantarjian; Guillermo Garcia-Manero

Blockade of immune checkpoints is emerging as a new form of anticancer therapy. We studied the expression of programmed death ligand 1 (PD-L1), PD-L2, programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA4) mRNA in CD34+ cells from myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML) patients (N=124). Aberrant upregulation (⩾2-fold) was observed in 34, 14, 15 and 8% of the patients. Increased expression of these four genes was also observed in peripheral blood mononuclear cells (PBMNCs) (N=61). The relative expression of PD-L1 from PBMNC was significantly higher in MDS (P=0.018) and CMML (P=0.0128) compared with AML. By immunohistochemical analysis, PD-L1 protein expression was observed in MDS CD34+ cells, whereas stroma/non-blast cellular compartment was positive for PD-1. In a cohort of patients treated with epigenetic therapy, PD-L1, PD-L2, PD-1 and CTLA4 expression was upregulated. Patients resistant to therapy had relative higher increments in gene expression compared with patients who achieved response. Treatment of leukemia cells with decitabine resulted in a dose-dependent upregulation of above genes. Exposure to decitabine resulted in partial demethylation of PD-1 in leukemia cell lines and human samples. This study suggests that PD-1 signaling may be involved in MDS pathogenesis and resistance mechanisms to hypomethylating agents. Blockade of this pathway can be a potential therapy in MDS and AML.


Cancer Discovery | 2016

Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia

Marina Konopleva; Daniel A. Pollyea; Jalaja Potluri; Brenda Chyla; Leah Hogdal; Todd Busman; Evelyn McKeegan; Ahmed Hamed Salem; Ming Zhu; Justin L. Ricker; William Blum; Courtney D. DiNardo; Tapan Kadia; Martin Dunbar; Rachel Kirby; Nancy Falotico; Joel D. Leverson; Rod Humerickhouse; Mack Mabry; Richard Stone; Hagop M. Kantarjian; Anthony Letai

We present a phase II, single-arm study evaluating 800 mg daily venetoclax, a highly selective, oral small-molecule B-cell leukemia/lymphoma-2 (BCL2) inhibitor in patients with high-risk relapsed/refractory acute myelogenous leukemia (AML) or unfit for intensive chemotherapy. Responses were evaluated following revised International Working Group (IWG) criteria. The overall response rate was 19%; an additional 19% of patients demonstrated antileukemic activity not meeting IWG criteria (partial bone marrow response and incomplete hematologic recovery). Twelve (38%) patients had isocitrate dehydrogenase 1/2 mutations, of whom 4 (33%) achieved complete response or complete response with incomplete blood count recovery. Six (19%) patients had BCL2-sensitive protein index at screening, which correlated with time on study. BH3 profiling was consistent with on-target BCL2 inhibition and identified potential resistance mechanisms. Common adverse events included nausea, diarrhea and vomiting (all grades), and febrile neutropenia and hypokalemia (grade 3/4). Venetoclax demonstrated activity and acceptable tolerability in patients with AML and adverse features. SIGNIFICANCE Venetoclax monotherapy demonstrated clinical activity in patients with AML (relapsed/refractory or unfit for intensive chemotherapy) with a tolerable safety profile in this phase II study. Predictive markers of response consistent with BCL2 dependence were identified. Clinical and preclinical findings provide a compelling rationale to evaluate venetoclax combined with other agents in AML. Cancer Discov; 6(10); 1106-17. ©2016 AACRSee related commentary by Pullarkat and Newman, p. 1082This article is highlighted in the In This Issue feature, p. 1069.


Blood | 2017

Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia

Eytan M. Stein; Courtney D. DiNardo; Daniel A. Pollyea; Amir T. Fathi; Gail J. Roboz; Jessica K. Altman; Richard Stone; Daniel J. DeAngelo; Ross L. Levine; Ian W. Flinn; Hagop M. Kantarjian; Robert H. Collins; Manish R. Patel; Arthur E. Frankel; Anthony S. Stein; Mikkael A. Sekeres; Ronan Swords; Bruno C. Medeiros; Christophe Willekens; Paresh Vyas; Alessandra Tosolini; Qiang Xu; Robert Knight; Katharine E. Yen; Sam Agresta; Stéphane de Botton; Martin S. Tallman

Recurrent mutations in isocitrate dehydrogenase 2 (IDH2) occur in ∼12% of patients with acute myeloid leukemia (AML). Mutated IDH2 proteins neomorphically synthesize 2-hydroxyglutarate resulting in DNA and histone hypermethylation, which leads to blocked cellular differentiation. Enasidenib (AG-221/CC-90007) is a first-in-class, oral, selective inhibitor of mutant-IDH2 enzymes. This first-in-human phase 1/2 study assessed the maximum tolerated dose (MTD), pharmacokinetic and pharmacodynamic profiles, safety, and clinical activity of enasidenib in patients with mutant-IDH2 advanced myeloid malignancies. We assessed safety outcomes for all patients and clinical efficacy in the largest patient subgroup, those with relapsed or refractory AML, from the phase 1 dose-escalation and expansion phases of the study. In the dose-escalation phase, an MTD was not reached at doses ranging from 50 to 650 mg per day. Enasidenib 100 mg once daily was selected for the expansion phase on the basis of pharmacokinetic and pharmacodynamic profiles and demonstrated efficacy. Grade 3 to 4 enasidenib-related adverse events included indirect hyperbilirubinemia (12%) and IDH-inhibitor-associated differentiation syndrome (7%). Among patients with relapsed or refractory AML, overall response rate was 40.3%, with a median response duration of 5.8 months. Responses were associated with cellular differentiation and maturation, typically without evidence of aplasia. Median overall survival among relapsed/refractory patients was 9.3 months, and for the 34 patients (19.3%) who attained complete remission, overall survival was 19.7 months. Continuous daily enasidenib treatment was generally well tolerated and induced hematologic responses in patients for whom prior AML therapy had failed. Inducing differentiation of myeloblasts, not cytotoxicity, seems to drive the clinical efficacy of enasidenib. This trial was registered at www.clinicaltrials.gov as #NCT01915498.


Blood | 2013

Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia

Courtney D. DiNardo; Kathleen J. Propert; Alison W. Loren; Elisabeth Paietta; Zhuoxin Sun; Ross L. Levine; Kimberly Straley; Katharine E. Yen; Jay Patel; Samuel V. Agresta; Omar Abdel-Wahab; Alexander E. Perl; Mark R. Litzow; Jacob M. Rowe; Hillard M. Lazarus; Hugo F. Fernandez; David J. Margolis; Martin S. Tallman; Selina M. Luger; Martin Carroll

Cancer-associated isocitrate dehydrogenase (IDH) mutations produce the metabolite 2-hydroxyglutarate (2HG), but the clinical utility of 2HG has not been established. We studied whether 2HG measurements in acute myeloid leukemia (AML) patients correlate with IDH mutations, and whether diagnostic or remission 2HG measurements predict survival. Sera from 223 de novo AML patients were analyzed for 2HG concentration by reverse-phase liquid chromatography-mass spectrometry. Pretreatment 2HG levels ranged from 10 to 30 000 ng/mL and were elevated in IDH-mutants (median, 3004 ng/mL), compared to wild-type IDH (median, 61 ng/mL) (P < .0005). 2HG levels did not differ among IDH1 or IDH2 allelic variants. In receiver operating characteristic analysis, a discriminatory level of 700 ng/mL optimally segregated patients with and without IDH mutations, and on subsequent mutational analysis of the 13 IDH wild-type samples with 2HG levels >700 ng/mL, 9 were identified to have IDH mutations. IDH-mutant patients with 2HG levels >200 at complete remission had shorter overall survival compared to 2HG ≤200 ng/mL (hazard ratio, 3.9; P = .02). We establish a firm association between IDH mutations and serum 2HG concentration in AML, and confirm that serum oncometabolite measurements provide useful diagnostic and prognostic information that can improve patient selection for IDH-targeted therapies.


Blood | 2014

Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms

Sa A. Wang; Robert P. Hasserjian; Patricia S. Fox; Heesun J. Rogers; Julia T. Geyer; Devon Chabot-Richards; Elizabeth Weinzierl; Joseph Hatem; Jesse Jaso; Rashmi Kanagal-Shamanna; Francesco C. Stingo; Keyur P. Patel; Meenakshi Mehrotra; Carlos E. Bueso-Ramos; Ken H. Young; Courtney D. DiNardo; Srdan Verstovsek; Ramon V. Tiu; Adam Bagg; Eric D. Hsi; Daniel A. Arber; Kathryn Foucar; Raja Luthra; Attilio Orazi

Atypical chronic myeloid leukemia (aCML) is a rare subtype of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) largely defined morphologically. It is, unclear, however, whether aCML-associated features are distinctive enough to allow its separation from unclassifiable MDS/MPN (MDS/MPN-U). To study these 2 rare entities, 134 patient archives were collected from 7 large medical centers, of which 65 (49%) cases were further classified as aCML and the remaining 69 (51%) as MDS/MPN-U. Distinctively, aCML was associated with many adverse features and an inferior overall survival (12.4 vs 21.8 months, P = .004) and AML-free survival (11.2 vs 18.9 months, P = .003). The aCML defining features of leukocytosis and circulating myeloid precursors, but not dysgranulopoiesis, were independent negative predictors. Other factors, such as lactate dehydrogenase, circulating myeloblasts, platelets, and cytogenetics could further stratify MDS/MPN-U but not aCML patient risks. aCML appeared to have more mutated RAS (7/20 [35%] vs 4/29 [14%]) and less JAK2p.V617F (3/42 [7%] vs 10/52 [19%]), but was not statistically significant. Somatic CSF3R T618I (0/54) and CALR (0/30) mutations were not detected either in aCML or MDS/MPN-U. In conclusion, within MDS/MPN, the World Health Organization 2008 criteria for aCML identify a subgroup of patients with features clearly distinct from MDS/MPN-U. The MDS/MPN-U category is heterogeneous, and patient risk can be further stratified by a number of clinicopathological parameters.


American Journal of Hematology | 2015

Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML

Courtney D. DiNardo; Farhad Ravandi; Sam Agresta; Marina Konopleva; Koichi Takahashi; Tapan Kadia; Mark Routbort; Keyur P. Patel; Mark Brandt; Sherry Pierce; Guillermo Garcia-Manero; Jorge Cortes; Hagop M. Kantarjian

The pathophysiology of IDH mutations in tumorigenesis is increasingly described, yet the prognostic significance of IDH1 and IDH2 mutations in AML remains controversial. The primary objective of this study was to define the natural history and prognosis of patients with AML and IDH1 or IDH2 mutations and provide historical survival expectations. A total of 826 patients treated from 2010 to 2014 at a single institution were evaluated, including 167 patients (20%) with AML and IDH1 or IDH2 mutations. Median age was 62 years (range 18–92). There were 59 IDH1‐R132, 83 IDH2‐R140, and 23 IDH2‐R172 mutations. Clinicopathologic characteristics associated with IDH‐mutations included older age, less frequent therapy‐related status, and increased incidence of intermediate‐risk cytogenetics, FLT3‐ITD mutations, and NPM1 mutations. Remission rates (CR/CRi) by AML treatment status were: induction, 68%; Salvage‐1 (S1), 42%; and Salvage‐2 and beyond (S2+), 27%. No difference in response was identified by IDH mutation status. Similarly, overall survival (OS) was not dependent on IDH status within any cohort. The median OS was 15.4 months in induction, 8.7 months in S1, and 4.8 months in S2+. This analysis defines the clinical outcome associated with IDH‐mutations in both the front‐line and salvage AML treatment settings, and confirms that response rate and OS for both IDH‐mutated and IDH wild‐type AML patients is comparable. This provides contemporary data to be used for comparison with results of novel investigational (e.g., selective IDH inhibitor) strategies. Am. J. Hematol. 90:732–736, 2015.


Lancet Oncology | 2017

Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study

Koichi Takahashi; Feng Wang; Hagop M. Kantarjian; Denaha J. Doss; Kanhav Khanna; Erika Thompson; Li Zhao; Keyur P. Patel; Sattva S. Neelapu; Curtis Gumbs; Carlos E. Bueso-Ramos; Courtney D. DiNardo; Simona Colla; Farhad Ravandi; Jianhua Zhang; Xuelin Huang; Xifeng Wu; Felipe Samaniego; Guillermo Garcia-Manero; P. Andrew Futreal

Background Therapy-related myeloid neoplasms (t-MNs) are often fatal secondary malignancies. Risk factors for t-MNs are not well understood. Recent studies suggested that individuals with clonal hematopoiesis have higher risk of developing hematological malignancies. We hypothesized that cancer patients with clonal hematopoiesis have increased risk of developing t-MNs. Methods We conducted a retrospective case-control study to compare the prevalence of clonal hematopoiesis between patients who developed t-MNs (cases) and who did not develop t-MNs (control). For cases, we studied14 patients with various types of cancers who developed t-MNs and whose paired samples of t-MN bone marrow (BM) and peripheral blood (PB) that were previously obtained at the time of primary cancer diagnosis were available. Fifty four patients with lymphoma who received combination chemotherapy and did not develop t-MNs after at least 5 years of follow up were studied as a control. We performed molecular barcode sequencing of 32 genes on the pre-treatment PB samples to detect clonal hematopoiesis. For the t-MN cases, we also performed targeted gene sequencing on t-MN BM samples and investigated clonal evolution from clonal hematopoiesis to t-MNs. To confirm association between clonal hematopoiesis and t-MN development, we also analyzed prevalence of clonal hematopoiesis in a separate cohort of 74 patients with lymphoma. All of these patients were treated under the prospective randomized trial of frontline chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) with or without melatonin and 5 (7%) of them had developed t-MNs. Findings In 14 patients with t-MNs, we detected pre-leukemic mutations in 10 of their prior PB samples (71%). In control, clonal hematopoiesis was detected in 17 patients (31%), and the cumulative incidence of t-MNs at 5 years was significantly higher in patients with clonal hematopoiesis (30% [95% CI: 16% – 51%] vs. 7% [95% CI: 2% – 21%], P = 0.016). In the separate cohort, 5 patients (7%) developed t-MNs and 4 (80%) of them had clonal hematopoiesis. The cumulative incidence of t-MNs at 10 years was significantly higher in patients with clonal hematopoiesis (29% [95% CI: 8%–53%] vs. 0% [95% CI: 0%–0%], P = 0.0009). Multivariate Fine and Gray model showed that having clonal hematopoiesis significantly increased the risk of t-MN development (HR = 13.7, P = 0.013). Interpretation Pre-leukemic clonal hematopoiesis is frequently detected in patients with t-MNs at the time of their primary cancer diagnosis and before patients were exposed to chemotherapy/radiation therapy. Detection of clonal hematopoiesis significantly increased the risk of t-MN development in patients with lymphoma. These data suggest potential approaches of screening clonal hematopoiesis in cancer patients to identify patients at risk of t-MNs and warrants a validation in prospective trial investigating a role of clonal hematopoiesis as a predictive marker for t-MNs.


Lancet Oncology | 2018

Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study

Courtney D. DiNardo; Keith W. Pratz; Anthony Letai; Brian A. Jonas; Andrew Wei; Michael J. Thirman; Martha Arellano; Mark G. Frattini; Hagop M. Kantarjian; Relja Popovic; Brenda Chyla; Tu Xu; Martin Dunbar; Suresh Agarwal; Rod Humerickhouse; Mack Mabry; Jalaja Potluri; Marina Konopleva; Daniel A. Pollyea

BACKGROUND Elderly patients (aged ≥65 years) with acute myeloid leukaemia have poor outcomes and no effective standard-of-care therapy exists. Treatment with hypomethylating agents such as azacitidine and decitabine is common, but responses are modest and typically short-lived. The oral anti-apoptotic B-cell lymphoma 2 protein inhibitor, venetoclax, has shown promising single-agent activity in patients with relapsed or refractory acute myeloid leukaemia and preclinical data suggested synergy between hypomethylating agents and venetoclax, which led to this combination phase 1b study. METHODS Previously untreated patients aged 65 years and over with acute myeloid leukaemia who were ineligible for standard induction therapy were enrolled into this non-randomised, open-label, phase 1b study. Patients were required to have an Eastern Cooperative Oncology Group performance status of 0-2 and either intermediate-risk or poor-risk cytogenetics. Patients were enrolled into one of three groups for the dose-escalation phase of this study: group A (venetoclax and intravenous decitabine 20 mg/m2 [days 1-5 of each 28-day cycle]), group B (venetoclax and subcutaneous or intravenous azacitidine 75 mg/m2 [days 1-7 of each 28-day cycle]), and group C (a venetoclax and decitabine substudy with the oral CYP3A inhibitor posaconazole, 300 mg twice on cycle 1, day 21, and 300 mg once daily from cycle 1, days 22-28, to assess its effect on venetoclax pharmacokinetics). Dose escalation followed a standard 3 + 3 design with at least three evaluable patients enrolled per cohort; daily target doses of venetoclax for groups A and B were 400 mg (cohort 1), 800 mg (cohorts 2 and 3), and 1200 mg (cohort 4), and 400 mg for group C. The primary endpoints were the safety and pharmacokinetics of venetoclax plus decitabine or azacitidine, and to determine the maximum tolerated dose and recommended phase 2 dose. Secondary endpoints included the preliminary anti-leukaemic activity of venetoclax with decitabine or azacitidine through the analysis of overall response, duration of response, and overall survival. We analysed safety, pharmacokinetics, and anti-leukaemic activity in all patients who received one or more venetoclax doses. The expansion phase of the study is ongoing but is closed to accrual. This trial is registered with ClinicalTrials.gov, number NCT02203773. FINDINGS 57 patients were enrolled in the study. 23 patients in group A and 22 patients in group B were enrolled between Nov 19, 2014, and Dec 15, 2015, and 12 patients in group C were enrolled between June 14, 2015, and Jan 16, 2016. As of data cutoff on June 15, 2016, the most common grade 3-4 treatment-emergent adverse events were thrombocytopenia (27 [47%] of 57 patients; nine in group A, 13 in group B, and five in group C), febrile neutropenia (24 [42%] of 57; 11 in group A, ten in group B, and three in group C), and neutropenia (23 [40%] of 57; 12 in group A, eight in group B, and three in group C). The most common serious treatment-emergent adverse event in groups A and B was febrile neutropenia (seven [30%] of 23 patients vs seven [32%] of 22), whereas in group C it was lung infection (four [33%] of 12 patients). 49 (86%) of 57 patients had treatment-related adverse events; the most common in groups A and B included nausea (12 [52%] patients vs seven [32%] patients), fatigue (six [26%] patients vs seven [32%]), and decreased neutrophil count (six [26%] patients vs six [27%]), whereas in group C the most common were nausea (seven [58%] of 12 patients), leucopenia (six [50%]), vomiting (five [42%]), and decreased platelet count (five [42%]). The maximum tolerated dose was not reached. The recommended phase 2 dose was 400 mg once a day or 800 mg with an interrupted dosing schedule (safety expansion). In total, four (7%) of 57 patients had died within 30 days of the first venetoclax dose caused by sepsis (group B), bacteraemia (group A), lung infection (group C), and respiratory failure (group A). Tumour lysis syndrome was not observed. Decitabine and azacitidine did not substantially affect venetoclax exposures. Overall, 35 (61%; 95% CI 47·6-74·0) of 57 patients achieved complete remission or complete remission with incomplete marrow recovery. In groups A and B, 27 (60%; 95% CI 44·3-74·3) of 45 patients had complete remission or complete remission with incomplete marrow recovery. INTERPRETATION Venetoclax plus hypomethylating agent therapy seems to be a novel, well-tolerated regimen with promising activity in this underserved patient population. Evaluation of expansion cohorts is ongoing at 400 mg and 800 mg doses using both hypomethylating agent combinations. FUNDING AbbVie and Genentech.


Blood | 2015

Getting a handle on hereditary CEBPA mutations.

Courtney D. DiNardo

In this issue of Blood , Tawana et al describe 24 patients with acute myeloid leukemia (AML) within 10 families with germline, ie, hereditary, mutations in the CCAAT/enhancer binding protein α ( CEBPA ) gene. Distinct biology and clinical outcomes, including unique patterns of “relapse,” are identified. 1


Leukemia | 2017

Isocitrate dehydrogenase mutations in myeloid malignancies

Bruno C. Medeiros; Amir T. Fathi; Courtney D. DiNardo; Daniel A. Pollyea; Steven M. Chan; Ronan Swords

Alterations to genes involved in cellular metabolism and epigenetic regulation are implicated in the pathogenesis of myeloid malignancies. Recurring mutations in isocitrate dehydrogenase (IDH) genes are detected in approximately 20% of adult patients with acute myeloid leukemia (AML) and 5% of adults with myelodysplastic syndromes (MDS). IDH proteins are homodimeric enzymes involved in diverse cellular processes, including adaptation to hypoxia, histone demethylation and DNA modification. The IDH2 protein is localized in the mitochondria and is a critical component of the tricarboxylic acid (also called the ‘citric acid’ or Krebs) cycle. Both IDH2 and IDH1 (localized in the cytoplasm) proteins catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Mutant IDH enzymes have neomorphic activity and catalyze reduction of α-KG to the (R) enantiomer of 2-hydroxyglutarate, which is associated with DNA and histone hypermethylation, altered gene expression and blocked differentiation of hematopoietic progenitor cells. The prognostic significance of mutant IDH (mIDH) is controversial but appears to be influenced by co-mutational status and the specific location of the mutation (IDH1-R132, IDH2-R140, IDH2-R172). Treatments specifically or indirectly targeted to mIDH are currently under clinical investigation; these therapies have been generally well tolerated and, when used as single agents, have shown promise for inducing responses in some mIDH patients when used as first-line treatment or in relapsed or refractory AML or MDS. Use of mIDH inhibitors in combination with drugs with non-overlapping mechanisms of action is especially promising, as such regimens may address the clonal heterogeneity and the multifactorial pathogenic processes involved in mIDH myeloid malignancies. Advances in mutational analysis have made testing more rapid and convenient, and less expensive; such testing should become part of routine diagnostic workup and repeated at relapse to identify patients who may benefit from treatments that target mIDH.

Collaboration


Dive into the Courtney D. DiNardo's collaboration.

Top Co-Authors

Avatar

Hagop M. Kantarjian

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Guillermo Garcia-Manero

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Tapan Kadia

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elias Jabbour

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Naval Daver

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Farhad Ravandi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jorge Cortes

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Marina Konopleva

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gautam Borthakur

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Naveen Pemmaraju

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge