Courtney Davidson
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Courtney Davidson.
Journal of Immunology | 2011
Narcy Arizmendi; Melanie Abel; Koichiro Mihara; Courtney Davidson; Danny Polley; Ahmed Nadeem; Tamer El Mays; Brendan Gilmore; Brian A. Walker; John Gordon; Morley D. Hollenberg; Harissios Vliagoftis
We have shown that proteinase-activated receptor-2 (PAR2) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR2 in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR2. To study the role of PAR2 in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR2 activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR2, mice were exposed intranasally to a receptor-blocking anti-PAR2 Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR2 blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR2 activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR2-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR2 activation may be a general mechanism used by aeroallergens to induce allergic sensitization.
Current Allergy and Asthma Reports | 2013
Vivek Gandhi; Courtney Davidson; Muhammad Asaduzzaman; Drew Nahirney; Harissios Vliagoftis
House dust mite (HDM) allergens are the most prevalent allergens associated with asthma and rhinitis around the world. The mechanisms of allergic sensitization and allergic airway inflammation after exposure to HDM have been studied extensively, but many questions remain unanswered. Airway epithelial cells are the first line of defense against external antigens and are considered an important player in the development of allergic airway inflammation. Both genetic susceptibility to allergic sensitization and HDM composition play decisive roles in the outcome of HDM-epithelium interactions, especially regarding airway epithelial dysfunction and allergic inflammation. Interactions between HDM and the airway epithelium have consequences for both development of allergy and asthma and development of allergic airway inflammation. This review will describe in detail these interactions and will identify issues that require more study.
Clinical & Experimental Allergy | 2015
Muhammad Asaduzzaman; Ahmed Nadeem; Narcy Arizmendi; Courtney Davidson; Heddie Nichols; Melanie Abel; Lavinia Ionescu; Lakshmi Puttagunta; Bernard Thébaud; John Gordon; Katie DeFea; Morley D. Hollenberg; Harissios Vliagoftis
Proteinase‐activated receptor 2 (PAR2) is a G protein‐coupled receptor activated by trypsin‐like serine proteinases. PAR2 activation has been associated with inflammation including allergic airway inflammation. We have also shown that PAR2 activation in the airways leads to allergic sensitization. The exact contribution of PAR2 in the development of eosinophilic inflammation and airway hyperresponsiveness (AHR) in sensitized individuals is not clear.
Allergy | 2012
E. Campos Alberto; E. MacLean; Courtney Davidson; Nami Shrestha Palikhe; J. Storie; C. Tse; D. Brenner; I. Mayers; Harissios Vliagoftis; A. El-Sohemy; Lisa Cameron
CRTh2 (chemoattractant‐receptor homologous molecule expressed on Th2 cells) is expressed by Th2 cells and other cells involved in allergic inflammation. Single nucleotide polymorphisms (SNPs) in CRTh2 (rs11571288, rs545659, rs634681) have been associated with various phenotypes of allergy in ethnically distinct populations. Here, we assessed the association between CRTh2 rs533116 and allergic asthma, expression of CRTh2 and Th2 cytokine production.
Allergy, Asthma & Clinical Immunology | 2011
Narcy Arizmendi; Melanie Abel; Lakshmi Puttagunta; Muhammad Asaduzzaman; Courtney Davidson; Khalil Karimi; Paul Forsythe; Harissios Vliagoftis
BackgroundAllergic sensitization to aeroallergens develops in response to mucosal exposure to these allergens. Allergic sensitization may lead to the development of asthma, which is characterized by chronic airway inflammation. The objective of this study is to describe in detail a model of mucosal exposure to cockroach allergens in the absence of an exogenous adjuvant.MethodsCockroach extract (CE) was administered to mice intranasally (i.n.) daily for 5 days, and 5 days later mice were challenged with CE for 4 consecutive days. A second group received CE i.n. for 3 weeks. Airway hyperresponsiveness (AHR) was assessed 24 h after the last allergen exposure. Allergic airway inflammation was assessed by BAL and lung histology 48 h after the last allergen exposure. Antigen-specific antibodies were assessed in serum. Lungs were excised from mice from measurement of cytokines and chemokines in whole lung lysate.ResultsMucosal exposure of Balb/c mice to cockroach extract induced airway eosinophilic inflammation, AHR and cockroach-specific IgG1; however, AHR to methacholine was absent in the long term group. Lung histology showed patchy, multicentric damage with inflammatory infiltrates at the airways in both groups. Lungs from mice from the short term group showed increased IL-4, CCL11, CXCL1 and CCL2 protein levels. IL4 and CXCL1 were also increased in the BAL of cockroach-sensitized mice in the short-term protocol.ConclusionsMucosal exposure to cockroach extract in the absence of adjuvant induces allergic airway sensitization characterized by AHR, the presence of Th2 cytokines in the lung and eosinophils in the airways.
Pflügers Archiv: European Journal of Physiology | 2012
Juraj Rievaj; Courtney Davidson; Ahmed Nadeem; Morley D. Hollenberg; Marek Duszyk; Harissios Vliagoftis
Protease-activated receptor 2 (PAR-2) is a G protein-coupled receptor possibly involved in the pathogenesis of asthma. PAR-2 also modulates ion transport in cultured epithelial cells, but these effects in native airways are controversial. The influence of allergic inflammation on PAR-2-induced changes in ion transport has received little attention. Here, we studied immediate changes in transepithelial short circuit current (Isc) induced by PAR-2 activation in the tracheas of naive and allergic mice. Activation of PAR-2 with an apically added activation peptide (AP) induced a small increase in Isc, while a much larger increase was observed following basolateral AP addition. In ovalbumin-sensitized and -challenged animals used as a model of allergic airway inflammation, the effect of basolateral AP addition was enhanced. Responses to basolateral AP in both naive and allergic mice were not decreased by blocking sodium absorption with amiloride or CFTR function with CFTRinh172 but were reduced by the cyclooxygenase inhibitor indomethacin and largely blocked (>80%) by niflumic acid, a calcium-activated chloride channels’ (CaCC) blocker. Allergic mice also showed an enhanced response to ATP and thapsigargin. There was no change in mRNA expression of Par-2 or of the chloride channels Ano1 (Tmem16a) and Bestrophin 2 in tracheas from allergic mice, while mRNA levels of Bestrophin 1 were increased. In conclusion, basolateral PAR-2 activation in the mouse airways led to increased anion secretion through apical CaCC, which was more pronounced in allergic animals. This could be a protective mechanism aimed at clearing allergens and defending against mucus plugging.
Clinical & Experimental Allergy | 2013
Courtney Davidson; Muhammad Asaduzzaman; Narcy Arizmendi; Daniel B. Polley; Y. Wu; John Gordon; Morley D. Hollenberg; Lisa Cameron; Harissios Vliagoftis
Many aeroallergens contain proteinase activity and are able to induce allergic sensitization when presented to mucosal surfaces. Some of these allergens activate proteinase‐activated receptor‐2 (PAR2).
Respiratory Research | 2014
Narcy Arizmendi; Lakshmi Puttagunta; Kerri L Chung; Courtney Davidson; Juliana Rey-Parra; Danny V Chao; Bernard Thébaud; Paige Lacy; Harissios Vliagoftis
BackgroundPulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models. For the studies described here we hypothesized that Rac2 deficiency protects mice from bleomycin-induced pulmonary fibrosis.MethodsTo determine the role of Rac2 in pulmonary fibrosis we used a bleomycin-induced mouse model. Anesthetized C57BL/6 wild type and rac2-/- mice were instilled intratracheally with bleomycin sulphate (1.25 U/Kg) or saline as control. Bronchoalveolar lavage (BAL) samples were collected at days 3 and 7 of treatment and analyzed for matrix metalloproteinases (MMPs). On day 21 after bleomycin treatment, we measured airway resistance and elastance in tracheotomized animals. Lung sections were stained for histological analysis, while homogenates were analyzed for hydroxyproline and total collagen content.ResultsBLM-treated rac2-/- mice had reduced MMP-9 levels in the BAL on day 3 and reduced neutrophilia and TNF and CCL3/MIP-1α levels in the BAL on day 7 compared to BLM-treated WT mice. We also showed that rac2-/- mice had significantly lower mortality (30%) than WT mice (70%) at day 21 of bleomycin treatment. Lung function was diminished in bleomycin-treated WT mice, while it was unaffected in bleomycin-treated rac2-/- mice. Histological analysis of inflammation and fibrosis as well as collagen and hydroxyproline content in the lungs did not show significant differences between BLM-treated rac2-/- and WT and mice that survived to day 21.ConclusionRac2 plays an important role in bleomycin-induced lung injury. It is an important signaling molecule leading to BLM-induced mortality and it also mediates the physiological changes seen in the airways after BLM-induced injury.
Biochemical and Biophysical Research Communications | 2008
Jason J. Coughlin; Solomon O. Odemuyiwa; Courtney Davidson; Redwan Moqbel
Eosinophil degranulation is thought to play a pathophysiological role in asthma. Rab27A is a GTP-binding protein that is known to be essential for the degranulation of several leukocyte subsets and thus may be essential for eosinophil granule exocytosis. Here, we show that Rab27A mRNA and protein are expressed in human eosinophils. We have developed a novel assay to assess Rab27A activation and have found a similar activation pattern of this protein upon stimulation of eosinophils, neutrophils and NK cells suggesting a similar function in these cell types. Interestingly, Rab27A expression was elevated in eosinophils from asthmatic donors. Furthermore, eosinophils from eosinophilic donors displayed more rapid Rab27A activation kinetics than those from donors with lower eosinophil counts. Given that elevated blood eosinophil numbers correlate with increased priming of eosinophils, this pattern of Rab27A activation suggests differential protein expression in activated cells may allow eosinophils to degranulate more rapidly upon stimulation.
Immunity, inflammation and disease | 2015
Graeme Bredo; Jessica Storie; Nami Shrestha Palikhe; Courtney Davidson; Alexis Adams; Harissios Vliagoftis; Lisa Cameron
Human CRTh2+ Th2 cells express IL‐25 receptor (IL‐25R) and IL‐25 has been shown to potentiate production of Th2 cytokines. However, regulation of IL‐25R and whether it participates in Th2 differentiation of human cells have not been examined. We sought to characterize IL‐25R expression on CD4+ T cells and determine whether IL‐25 plays a role in Th2 differentiation. Naïve human CD4+ T cells were activated in the presence of IL‐25, IL‐4 (Th2 conditions) or both cytokines to assess their relative influence on Th2 differentiation. For experiments with differentiated Th2 cells, CRTh2‐expressing cells were isolated from differentiating cultures. IL‐25R, GATA3, CRTh2 and Th2 cytokine expression were assessed by flow cytometry, qRT‐PCR and ELISA. Expression of surface IL‐25R was induced early during Th2 differentiation (2 days). Addition of IL‐25 to naïve CD4+ T cells revealed that it induces expression of its own receptor, more strongly than IL‐4. IL‐25 also increased the proportions of IL‐4‐, GATA3‐ and CRTh2‐expressing cells and expression of IL‐5 and IL‐13. Activation of differentiated CRTh2+ Th2 cells through the TCR or by CRTh2 agonist increased surface expression of IL‐25R, though re‐expression of CRTh2 following TCR downregulation was impeded by IL‐25. These data suggest that IL‐25 may play various roles in Th2 mediated immunity. We establish here it regulates expression of its own receptor and can initiate Th2 differentiation, though not as strongly as IL‐4.