Courtney W. Hudgens
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Courtney W. Hudgens.
Science | 2018
V. Gopalakrishnan; C. N. Spencer; Luigi Nezi; Alexandre Reuben; Miles C. Andrews; T. V. Karpinets; Peter A. Prieto; D. Vicente; K. Hoffman; Spencer C. Wei; Alexandria P. Cogdill; Li Zhao; Courtney W. Hudgens; D. S. Hutchinson; T. Manzo; M. Petaccia de Macedo; Tiziana Cotechini; T. Kumar; Wei Shen Chen; Sangeetha M. Reddy; R. Szczepaniak Sloane; J. Galloway-Pena; Hong Jiang; Pei Ling Chen; E. J. Shpall; K. Rezvani; A. M. Alousi; R. F. Chemaly; S. Shelburne; Luis Vence
Good bacteria help fight cancer Resident gut bacteria can affect patient responses to cancer immunotherapy (see the Perspective by Jobin). Routy et al. show that antibiotic consumption is associated with poor response to immunotherapeutic PD-1 blockade. They profiled samples from patients with lung and kidney cancers and found that nonresponding patients had low levels of the bacterium Akkermansia muciniphila. Oral supplementation of the bacteria to antibiotic-treated mice restored the response to immunotherapy. Matson et al. and Gopalakrishnan et al. studied melanoma patients receiving PD-1 blockade and found a greater abundance of “good” bacteria in the guts of responding patients. Nonresponders had an imbalance in gut flora composition, which correlated with impaired immune cell activity. Thus, maintaining healthy gut flora could help patients combat cancer. Science, this issue p. 91, p. 104, p. 97; see also p. 32 Gut bacteria influence patient response to cancer therapy. Preclinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti–programmed cell death 1 protein (PD-1) immunotherapy (n = 112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders versus nonresponders. Analysis of patient fecal microbiome samples (n = 43, 30 responders, 13 nonresponders) showed significantly higher alpha diversity (P < 0.01) and relative abundance of bacteria of the Ruminococcaceae family (P < 0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in responders, including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and antitumor immunity in responding patients with a favorable gut microbiome as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.
Nature | 2016
Amanpreet Kaur; Marie R. Webster; Katie Marchbank; Reeti Behera; Abibatou Ndoye; Curtis H. Kugel; Vanessa Dang; Jessica Appleton; Michael P. O'Connell; Phil F. Cheng; Alexander Valiga; Rachel Morissette; Nazli B. McDonnell; Luigi Ferrucci; Andrew V. Kossenkov; Katrina Meeth; Hsin Yao Tang; Xiangfan Yin; William H. Wood; Elin Lehrmann; Kevin G. Becker; Keith T. Flaherty; Dennie T. Frederick; Jennifer A. Wargo; Zachary A. Cooper; Michael T. Tetzlaff; Courtney W. Hudgens; Katherine M. Aird; Rugang Zhang; Xiaowei Xu
Cancer is a disease of ageing. Clinically, aged cancer patients tend to have a poorer prognosis than young. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumour progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression, we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and response to targeted therapy. Here we find that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signalling cascade in melanoma cells that results in a decrease in β-catenin and microphthalmia-associated transcription factor (MITF), and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuates the response of melanoma cells to DNA damage induced by reactive oxygen species, rendering the cells more resistant to targeted therapy (vemurafenib). Age-related increases in sFRP2 also augment both angiogenesis and metastasis of melanoma cells. These data provide an integrated view of how fibroblasts in the aged microenvironment contribute to tumour progression, offering new possibilities for the design of therapy for the elderly.
Clinical Cancer Research | 2016
Laurence Feldmeyer; Courtney W. Hudgens; Genevieve Ray-Lyons; Priyadharsini Nagarajan; Phyu P. Aung; Jonathan L. Curry; Carlos A. Torres-Cabala; Barbara Mino; Jaime Rodriguez-Canales; Alexandre Reuben; Pei Ling Chen; Jennifer S. Ko; Steven D. Billings; Roland L. Bassett; Ignacio I. Wistuba; Zachary A. Cooper; Victor G. Prieto; Jennifer A. Wargo; Michael T. Tetzlaff
Purpose: Merkel cell carcinoma (MCC) is an aggressive cancer with frequent metastasis and death with few effective therapies. Because programmed death ligand-1 (PD-L1) is frequently expressed in MCC, immune checkpoint blockade has been leveraged as treatment for metastatic disease. There is therefore a critical need to understand the relationships between MCPyV status, immune profiles, and patient outcomes. Experimental Design: IHC for CD3, CD8, PD-1, PD-L1, and MCPyV T-antigen (to determine MCPyV status) was performed on 62 primary MCCs with annotated clinical outcomes. Automated image analysis quantified immune cell density (positive cells/mm2) at discrete geographic locations (tumor periphery, center, and hotspot). T-cell receptor sequencing (TCRseq) was performed in a subset of MCCs. Results: No histopathologic variable associated with overall survival (OS) or disease-specific survival (DSS), whereas higher CD3+ (P = 0.004) and CD8+ (P = 0.037) T-cell density at the tumor periphery associated with improved OS. Higher CD8+ T-cell density at the tumor periphery associated with improved DSS (P = 0.049). Stratifying MCCs according to MCPyV status, higher CD3+ (P = 0.026) and CD8+ (P = 0.015) T-cell density at the tumor periphery associated with improved OS for MCPyV+ but not MCPyV− MCC. TCRseq revealed clonal overlap among MCPyV+ samples, suggesting an antigen-specific response against a unifying antigen. Conclusions: These findings establish the tumor-associated immune infiltrate at the tumor periphery as a robust prognostic indicator in MCC and provide a mechanistic rationale to further examine whether the immune infiltrate at the tumor periphery is relevant as a biomarker for response in ongoing and future checkpoint inhibitor trials in MCC. Clin Cancer Res; 22(22); 5553–63. ©2016 AACR.
Lancet Oncology | 2018
Rodabe N. Amaria; Peter A. Prieto; Michael T. Tetzlaff; Alexandre Reuben; Miles C. Andrews; Merrick I. Ross; Isabella C. Glitza; Janice N. Cormier; Wen-Jen Hwu; Hussein Abdul-Hassan Tawbi; Sapna Pradyuman Patel; Jeffrey E. Lee; Jeffrey E. Gershenwald; Christine N. Spencer; Vancheswaran Gopalakrishnan; Roland L. Bassett; Lauren Simpson; Rosalind Mouton; Courtney W. Hudgens; Li Zhao; Haifeng Zhu; Zachary A. Cooper; Khalida Wani; Alexander J. Lazar; Patrick Hwu; Adi Diab; Michael K. Wong; Jennifer L. McQuade; Richard E. Royal; Anthony Lucci
BACKGROUND Dual BRAF and MEK inhibition produces a response in a large number of patients with stage IV BRAF-mutant melanoma. The existing standard of care for patients with clinical stage III melanoma is upfront surgery and consideration for adjuvant therapy, which is insufficient to cure most patients. Neoadjuvant targeted therapy with BRAF and MEK inhibitors (such as dabrafenib and trametinib) might provide clinical benefit in this high-risk p opulation. METHODS We undertook this single-centre, open-label, randomised phase 2 trial at the University of Texas MD Anderson Cancer Center (Houston, TX, USA). Eligible participants were adult patients (aged ≥18 years) with histologically or cytologically confirmed surgically resectable clinical stage III or oligometastatic stage IV BRAFV600E or BRAFV600K (ie, Val600Glu or Val600Lys)-mutated melanoma. Eligible patients had to have an Eastern Cooperative Oncology Group performance status of 0 or 1, a life expectancy of more than 3 years, and no previous exposure to BRAF or MEK inhibitors. Exclusion criteria included metastases to bone, brain, or other sites where complete surgical excision was in doubt. We randomly assigned patients (1:2) to either upfront surgery and consideration for adjuvant therapy (standard of care group) or neoadjuvant plus adjuvant dabrafenib and trametinib (8 weeks of neoadjuvant oral dabrafenib 150 mg twice per day and oral trametinib 2 mg per day followed by surgery, then up to 44 weeks of adjuvant dabrafenib plus trametinib starting 1 week after surgery for a total of 52 weeks of treatment). Randomisation was not masked and was implemented by the clinical trial conduct website maintained by the trial centre. Patients were stratified by disease stage. The primary endpoint was investigator-assessed event-free survival (ie, patients who were alive without disease progression) at 12 months in the intent-to-treat population. This trial is registered at ClinicalTrials.gov, number NCT02231775. FINDINGS Between Oct 23, 2014, and April 13, 2016, we randomly assigned seven patients to standard of care, and 14 to neoadjuvant plus adjuvant dabrafenib and trametinib. The trial was stopped early after a prespecified interim safety analysis that occurred after a quarter of the participants had been accrued revealed significantly longer event-free survival with neoadjuvant plus adjuvant dabrafenib and trametinib than with standard of care. After a median follow-up of 18·6 months (IQR 14·6-23·1), significantly more patients receiving neoadjuvant plus adjuvant dabrafenib and trametinib were alive without disease progression than those receiving standard of care (ten [71%] of 14 patients vs none of seven in the standard of care group; median event-free survival was 19·7 months [16·2-not estimable] vs 2·9 months [95% CI 1·7-not estimable]; hazard ratio 0·016, 95% CI 0·00012-0·14, p<0·0001). Neoadjuvant plus adjuvant dabrafenib and trametinib were well tolerated with no occurrence of grade 4 adverse events or treatment-related deaths. The most common adverse events in the neoadjuvant plus adjuvant dabrafenib and trametinib group were expected grade 1-2 toxicities including chills (12 patients [92%]), headache (12 [92%]), and pyrexia (ten [77%]). The most common grade 3 adverse event was diarrhoea (two patients [15%]). INTERPRETATION Neoadjuvant plus adjuvant dabrafenib and trametinib significantly improved event-free survival versus standard of care in patients with high-risk, surgically resectable, clinical stage III-IV melanoma. Although the trial finished early, limiting generalisability of the results, the findings provide proof-of-concept and support the rationale for further investigation of neoadjuvant approaches in this disease. This trial is currently continuing accrual as a single-arm study of neoadjuvant plus adjuvant dabrafenib and trametinib. FUNDING Novartis Pharmaceuticals Corporation.
npj Genomic Medicine | 2017
Alexandre Reuben; Christine N. Spencer; Peter A. Prieto; Vancheswaran Gopalakrishnan; Sangeetha M. Reddy; John P. Miller; Xizeng Mao; Mariana Petaccia de Macedo; Jiong Chen; Xingzhi Song; Hong Jiang; Pei Ling Chen; Hannah C. Beird; Haven R. Garber; Whijae Roh; Khalida Wani; Eveline Chen; Cara Haymaker; Marie Andrée Forget; Latasha Little; Curtis Gumbs; Rebecca Thornton; Courtney W. Hudgens; Wei Shen Chen; Jacob Austin-Breneman; Robert Sloane; Luigi Nezi; Alexandria P. Cogdill; Chantale Bernatchez; Jason Roszik
Appreciation for genomic and immune heterogeneity in cancer has grown though the relationship of these factors to treatment response has not been thoroughly elucidated. To better understand this, we studied a large cohort of melanoma patients treated with targeted therapy or immune checkpoint blockade (n = 60). Heterogeneity in therapeutic responses via radiologic assessment was observed in the majority of patients. Synchronous melanoma metastases were analyzed via deep genomic and immune profiling, and revealed substantial genomic and immune heterogeneity in all patients studied, with considerable diversity in T cell frequency, and few shared T cell clones (<8% on average) across the cohort. Variables related to treatment response were identified via these approaches and through novel radiomic assessment. These data yield insight into differential therapeutic responses to targeted therapy and immune checkpoint blockade in melanoma, and have key translational implications in the age of precision medicine.Melanoma: Tumor differences within a patient may explain heterogeneous responsesPatients with metastatic melanoma display molecular and immune differences across tumor sites associated with differential drug responses. A team led by Jennifer Wargo from the University of Texas MD Anderson Cancer Center, Houston, USA, studied the radiological responses of 60 patients with metastatic melanoma, half of whom received targeted drug therapy and half of whom received an immune checkpoint inhibitor. The majority (83%) showed differences in responses across metastases. The group then profiled tumors in a subset, and found molecular and immune heterogeneity in different tumors within the same patient. Heterogeneity in mutational and immune profiles within tumors from individual patients could explain differences in treatment response. Knowing this, the authors emphasize the importance of acquiring biopsies from more than one tumor site in order to best tailor therapies to the features of metastatic cancer.
The Journal of Pathology | 2016
Michael T. Tetzlaff; Rajesh Singh; Elena G. Seviour; Jonathan L. Curry; Courtney W. Hudgens; Diana Bell; Daniel A. Wimmer; Jing Ning; Bogdan Czerniak; Li Zhang; Michael A. Davies; Victor G. Prieto; Russell Broaddus; Prahlad T. Ram; Rajyalakshmi Luthra; Bita Esmaeli
Sebaceous carcinoma (SC) is a rare but aggressive malignancy with frequent recurrence and metastases. Surgery is the mainstay of therapy, but effective systemic therapies are lacking because the molecular alterations driving SC remain poorly understood. To identify these, we performed whole‐exome next‐generation sequencing of 409 cancer‐associated genes on 27 SCs (18 primary/locally recurrent ocular, 5 paired metastatic ocular, and 4 primary extraocular) from 20 patients. In ocular SC, we identified 139 non‐synonymous somatic mutations (median/lesion 3; range 0–23). Twenty‐five of 139 mutations (18%) occurred in potentially clinically actionable genes in 6 of 16 patients. The most common mutations were mutations in TP53 (n = 9), RB1 (n = 6), PIK3CA (n = 2), PTEN (n = 2), ERBB2 (n = 2), and NF1 (n = 2). TP53 and RB1 mutations were restricted to ocular SC and correlated with aberrant TP53 and RB protein expression. Systematic pathway analyses demonstrated convergence of these mutations to activation of the PI3K signalling cascade, and PI3K pathway activation was confirmed in tumours with PTEN and/or PIK3CA mutations. Considerable inter‐tumoural heterogeneity was observed between paired primary and metastatic ocular SCs. In primary extraocular SC, we identified 77 non‐synonymous somatic mutations (median/lesion 22.5; range 3–29). This overall higher mutational load was attributed to a microsatellite instability phenotype in three of four patients and somatically acquired mutations in mismatch repair genes in two of four patients. Eighteen of 77 mutations (23%) were in potentially clinically actionable genes in three of four patients, including BTK, FGFR2, PDGFRB, HRAS, and NF1 mutations. Identification of potentially clinically actionable mutations in 9 of 20 SC patients (45%) underscores the importance of next‐generation sequencing to expand the spectrum of genotype‐matched targeted therapies. Frequent activation of PI3K signalling pathways provides a strong rationale for application of mTOR inhibitors in the management of this disease. Copyright
JAMA Oncology | 2016
Guo Chen; Jennifer L. McQuade; David J. Panka; Courtney W. Hudgens; Ali Amin-Mansour; Xinmeng Jasmine Mu; Samira Bahl; Judit Jané-Valbuena; Khalida Wani; Alexandre Reuben; Caitlyn A. Creasy; Hong Jiang; Zachary A. Cooper; Jason Roszik; Roland L. Bassett; Aron Joon; Lauren Simpson; Rosalind Mouton; Isabella C. Glitza; Sapna Pradyuman Patel; Wen-Jen Hwu; Rodabe N. Amaria; Adi Diab; Patrick Hwu; Alexander J. Lazar; Jennifer A. Wargo; Levi A. Garraway; Michael T. Tetzlaff; Ryan J. Sullivan; Kevin B. Kim
IMPORTANCE Combined treatment with dabrafenib and trametinib (CombiDT) achieves clinical responses in only about 15% of patients with BRAF inhibitor (BRAFi)-refractory metastatic melanoma in contrast to the higher response rate observed in BRAFi-naïve patients. Identifying correlates of response and mechanisms of resistance in this population will facilitate clinical management and rational therapeutic development. OBJECTIVE To determine correlates of benefit from CombiDT therapy in patients with BRAFi-refractory metastatic melanoma. DESIGN, SETTING, AND PARTICIPANTS Single-center, single-arm, open-label phase 2 trial of CombiDT treatment in patients with BRAF V600 metastatic melanoma resistant to BRAFi monotherapy conducted between September 2012 and October 2014 at the University of Texas MD Anderson Cancer Center. Key eligibility criteria for participants included BRAF V600 metastatic melanoma, prior BRAFi monotherapy, measurable disease (RECIST 1.1), and tumor accessible for biopsy. INTERVENTIONS Patients were treated with dabrafenib (150 mg, twice daily) and trametinib (2 mg/d) continuously until disease progression or intolerance. All participants underwent a mandatory baseline biopsy, and optional biopsy specimens were obtained on treatment and at disease progression. Whole-exome sequencing, reverse transcription polymerase chain reaction analysis for BRAF splicing, RNA sequencing, and immunohistochemical analysis were performed on tumor samples, and blood was analyzed for levels of circulating BRAF V600. MAIN OUTCOMES AND MEASURES The primary end point was overall response rate (ORR). Progression-free survival (PFS) and overall survival (OS) were secondary clinical end points. RESULTS A total of 28 patients were screened, and 23 enrolled. Among evaluable patients, the confirmed ORR was 10%; disease control rate (DCR) was 45%, and median PFS was 13 weeks. Clinical benefit was associated with duration of prior BRAFi therapy greater than 6 months (DCR, 73% vs 11% for ≤6 months; P = .02) and decrease in circulating BRAF V600 at day 8 of cycle 1 (DCR, 75% vs 18% for no decrease; P = .02) but not with pretreatment mitogen-activated protein kinase (MAPK) pathway mutations or activation. Biopsy specimens obtained during treatment demonstrated that CombiDT therapy failed to achieve significant MAPK pathway inhibition or immune infiltration in most patients. CONCLUSIONS AND RELEVANCE The baseline presence of MAPK pathway alterations was not associated with benefit from CombiDT in patients with BRAFi-refractory metastatic melanoma. Failure to inhibit the MAPK pathway provides a likely explanation for the limited clinical benefit of CombiDT in this setting. Circulating BRAF V600 is a promising early biomarker of clinical response. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01619774.
Cancer immunology research | 2017
Cara Haymaker; Dae Won Kim; Marc Uemura; Luis Vence; Ann Phillip; Natalie McQuail; Paul D. Brown; Irina Fernandez; Courtney W. Hudgens; Caitlin Creasy; Wen-Jen Hwu; Padmanee Sharma; Michael T. Tetzlaff; James P. Allison; Patrick Hwu; Chantale Bernatchez; Adi Diab
This case report provides a rationale for a carefully timed combination of WBRT + anti-PD-1 for the treatment of metastatic melanoma patients with brain metastases, as well as for other cancers for which anti–PD-1 has been approved. We report here on a patient with metastatic melanoma who had extensive brain metastases. After being treated with the sequential combination of whole brain radiation therapy followed by the PD-1–inhibitory antibody, pembrolizumab, the patient had a durable complete response. Retrospective laboratory studies of T cells revealed that, after treatment with anti-PD-1 commenced, effector CD8+ T cells in the blood expanded and the ratio of CD8+:Treg T cells increased. A CD8+ T-cell clone present in the initial brain metastases was expanded in the blood after anti-PD-1 treatment, which suggested an antitumor role for this clone. Immunohistochemical analysis confirmed the presence of CD8+ T cells and low PD-L1 expression in the brain metastases before immunotherapy initiation. This sequence of therapy may provide an option for melanoma patients with unresponsive brain metastases. Cancer Immunol Res; 5(2); 100–5. ©2017 AACR.
Nature Communications | 2017
Rajasekharan Somasundaram; Gao Zhang; Mizuho Fukunaga-Kalabis; Clemens Krepler; Xiaowei Xu; Christine Wagner; Denitsa Hristova; Jie Zhang; Tian Tian; Zhi Wei; Qin Liu; Kanika Garg; Johannes Griss; Rufus Hards; Margarita Maurer; Christine Hafner; Marius Mayerhöfer; Georgios Karanikas; Ahmad Jalili; Verena Bauer-Pohl; Felix Weihsengruber; Klemens Rappersberger; Josef Koller; Roland Lang; Courtney W. Hudgens; Guo Chen; Michael T. Tetzlaff; Lawrence Wu; Dennie T. Frederick; Richard A. Scolyer
In melanoma, therapies with inhibitors to oncogenic BRAFV600E are highly effective but responses are often short-lived due to the emergence of drug-resistant tumor subpopulations. We describe here a mechanism of acquired drug resistance through the tumor microenvironment, which is mediated by human tumor-associated B cells. Human melanoma cells constitutively produce the growth factor FGF-2, which activates tumor-infiltrating B cells to produce the growth factor IGF-1. B-cell-derived IGF-1 is critical for resistance of melanomas to BRAF and MEK inhibitors due to emergence of heterogeneous subpopulations and activation of FGFR-3. Consistently, resistance of melanomas to BRAF and/or MEK inhibitors is associated with increased CD20 and IGF-1 transcript levels in tumors and IGF-1 expression in tumor-associated B cells. Furthermore, first clinical data from a pilot trial in therapy-resistant metastatic melanoma patients show anti-tumor activity through B-cell depletion by anti-CD20 antibody. Our findings establish a mechanism of acquired therapy resistance through tumor-associated B cells with important clinical implications.Resistance to BRAFV600E inhibitors often occurs in melanoma patients. Here, the authors describe a potential mechanism of acquired drug resistance mediated by tumor-associated B cells-derived IGF-1.
Cancer Research | 2017
Vancheswaran Gopalakrishnan; Christine N. Spencer; Alexandre Reuben; Peter A. Prieto; Diego Vicente; Tatiana Karpinets; Courtney W. Hudgens; Diane S. Hutchinson; Michael T. Tetzlaff; Alexander J. Lazar; Michael A. Davies; Jeffrey E. Gershenwald; Robert R. Jenq; Patrick Hwu; Padmanee Sharma; James P. Allison; Andrew Futreal; Nadim J. Ajami; Joseph F. Petrosino; Carrie Daniel-MacDougall; Jennifer A. Wargo
Background: Melanoma therapy has benefitted greatly from immune checkpoint blockade, although responses are variable and not always durable. There is a growing appreciation of the role of the microbiome in cancer-related outcomes and recent evidence in murine models suggests that modulation of the gut microbiome may enhance responses to immune checkpoint blockade in melanoma. However this has not been investigated in patients. Here, we demonstrate that differential bacterial “signatures” exist in the gut microbiome of responders (R) and non-responders (NR) to anti-PD-1 therapy, and that insights gained could be used to derive actionable strategies to enhance responses. Methods: We collected buccal (n=105) and stool (n=53) samples from a cohort of anti-PD-1 treated metastatic melanoma patients (n=110). Patients were classified as either R or NR based on RECIST criteria, and 16S rDNA, and whole-genome shotgun sequencing was performed to characterize the diversity, composition and functional capabilities of the microbiomes. Immune profiling (via 7-marker IHC panel of CD3, CD8, PD-1, PD-L1, Granzyme B, RORγT and FoxP3) and cytokine analyses were also performed on available tumors and serum samples at baseline. Results: In these studies, we observed significant differences in the diversity and composition of the gut microbiome in R versus NR to PD-1 blockade at baseline, but no clear differences in buccal microbiomes. Specifically, R had a significantly higher alpha diversity compared to NR (p=0.017), and the Ruminococcaceae family of the Clostridiales order was enriched in R whereas Prevotellaceae family of the Bacteroidales order was enriched in NR. Immune profiling demonstrated significantly increased immune infiltrates in baseline tumor samples of R, with a positive correlation between CD8, CD3, PD-1 and FoxP3 T-cell density and abundance of specific bacteria enriched in R (e.g. Faecalibacterium). Low diversity was also associated with elevated levels of chronic inflammation markers in the serum at baseline. Lastly, we saw differentially abundant metabolic pathways in the gut microbiomes of R (pyrimidine nucleotide biosynthesis, fatty acid biosynthesis, shikimate pathway) vs NR (Tricarboxylic acid cycle, assimilatory sulphate and nitrate reduction, tryptophan biosynthesis). Conclusion: Differences exist in the diversity and composition of the gut microbiome in R vs NR to anti-PD-1 therapy and these microbiota could bridge the gap between host metabolism and anti-tumor immunity. These results have far-reaching implications and suggest that modifications to the gut microbiome could potentially enhance therapeutic responses to immune checkpoint blockade. Citation Format: Vancheswaran Gopalakrishnan, Christine Spencer, Alexandre Reuben, Peter Prieto, Diego Vicente, Tatiana V. Karpinets, Courtney W. Hudgens, Diane S. Hutchinson, Michael Tetzlaff, Alexander Lazar, Michael A. Davies, Jeffrey E. Gershenwald, Robert Jenq, Patrick Hwu, Padmanee Sharma, James Allison, Andrew Futreal, Nadim Ajami, Joseph Petrosino, Carrie Daniel-MacDougall, Jennifer A. Wargo. Response to anti-PD-1 based therapy in metastatic melanoma patients is associated with the diversity and composition of the gut microbiome [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2672. doi:10.1158/1538-7445.AM2017-2672