Courtney W. Stairs
Dalhousie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Courtney W. Stairs.
Current Biology | 2016
Anna Karnkowska; Vojtěch Vacek; Zuzana Zubáčová; Sebastian C. Treitli; Romana Petrželková; Laura Eme; Lukáš Novák; Vojtěch Žárský; Lael D. Barlow; Emily K. Herman; Petr Soukal; Miluše Hroudová; Pavel Doležal; Courtney W. Stairs; Andrew J. Roger; Marek Eliáš; Joel B. Dacks; Čestmír Vlček; Vladimír Hampl
The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.
Molecular Biology and Evolution | 2011
Courtney W. Stairs; Andrew J. Roger; Vladimír Hampl
Most of the major groups of eukaryotes have microbial representatives that thrive in low oxygen conditions. Those that have been studied in detail generate ATP via pathways involving anaerobically functioning enzymes of pyruvate catabolism that are typically absent in aerobic eukaryotes and whose origins remain controversial. These enzymes include pyruvate:ferredoxin oxidoreductase, pyruvate:NADP(+) oxidoreductase, and pyruvate formate lyase (Pfl). Pfl catalyzes the nonoxidative generation of formate and acetyl-Coenzyme A (CoA) from pyruvate and CoA and is activated by Pfl activating enzyme (Pfla). Within eukaryotes, this extremely oxygen-sensitive pathway was first described in the hydrogenosomes of anaerobic chytrid fungi and has more recently been characterized in the mitochondria and chloroplasts of the chlorophyte alga Chlamydomonas reinhardtii. To clarify the origins of this pathway, we have comprehensively searched for homologs of Pfl and Pfla in publicly available large-scale eukaryotic genomic and cDNA sequencing data, including our own from the anaerobic amoebozoan Mastigamoeba balamuthi. Surprisingly, we find that these enzymes are widely distributed and are present in diverse facultative or obligate anaerobic eukaryotic representatives of the archaeplastidan, metazoan, amoebozoan, and haptophyte lineages. Using maximum likelihood and Bayesian phylogenetic methods, we show that the eukaryotic Pfl and Pfla sequences each form monophyletic groups that are most closely related to homologs in firmicute gram-positive bacteria. Topology tests exclude both α-proteobacterial and cyanobacterial affinities for these genes suggesting that neither originated from the endosymbiotic ancestors of mitochondria or chloroplasts. Furthermore, the topologies of the eukaryote portion of the Pfl and Pfla trees significantly differ from well-accepted eukaryote relationships. Collectively, these results indicate that the Pfl pathway was first acquired by lateral gene transfer into a eukaryotic lineage most probably from a firmicute bacterial lineage and that it has since been spread across diverse eukaryotic groups by more recent eukaryote-to-eukaryote transfer events.
Philosophical Transactions of the Royal Society B | 2015
Courtney W. Stairs; Michelle M. Leger; Andrew J. Roger
Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes.
Nature Reviews Microbiology | 2017
Laura Eme; Anja Spang; Jonathan Lombard; Courtney W. Stairs; Thijs J. G. Ettema
Woese and Foxs 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor.
Molecular Biology and Evolution | 2015
Eva Nývltová; Courtney W. Stairs; Ivan Hrdý; Jakub Rídl; Jan Mach; Jan Pačes; Andrew J. Roger; Jan Tachezy
Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition.
Gastrointestinal Endoscopy | 2011
Vladimír Hampl; Courtney W. Stairs; Andrew J. Roger
There is little doubt that genes can spread across unrelated prokaryotes, eukaryotes and even between these domains. It is expected that organisms inhabiting a common niche may exchange their genes even more often due to their physical proximity and similar demands. One such niche is anaerobic or microaerophilic environments in some sediments and intestines of animals. Indeed, enzymes advantageous for metabolism in these environments often exhibit an evolutionary history incoherent with the history of their hosts indicating potential transfers. The evolutionary paths of some very basic enzymes for energy metabolism of anaerobic eukaryotes (pyruvate formate lyase, pyruvate:ferredoxin oxidoreductase, [FeFe]hydrogenase and arginine deiminase) seems to be particularly intriguing and although their histories are not identical they share several unexpected features in common. Every enzyme mentioned above is present in groups of eukaryotes that are unrelated to each other. Although the enzyme phylogenies are not always robustly supported, they always suggest that the eukaryotic homologues form one or two clades, in which the relationships are not congruent with the eukaryotic phylogeny. Finally, these eukaryotic enzymes are never specifically related to homologues from α-proteobacteria, ancestors of mitochondria. The most plausible explanation for evolution of this pattern expects one or two interdomain transfers to one or two eukaryotes from prokaryotes, who were not the mitochondrial endosymbiont. Once the genes were introduced into the eukaryotic domain they have spread to other eukaryotic groups exclusively via eukaryote-to-eukaryote transfers. Currently, eukaryote-to-eukaryote gene transfers have been regarded as less common than prokaryote-to-eukaryote transfers. The fact that eukaryotes accepted genes for these enzymes solely from other eukaryotes and not prokaryotes present in the same environment is surprising.
Nature | 2016
Emmo Hamann; Harald R. Gruber-Vodicka; Manuel Kleiner; Halina E. Tegetmeyer; Dietmar Riedel; Sten Littmann; Jianwei Chen; Jana Milucka; Bernhard Viehweger; Kevin W. Becker; Xiaoli Dong; Courtney W. Stairs; Kai-Uwe Hinrichs; Matthew W. Brown; Andrew J. Roger; Marc Strous
Summary Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi1–3. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle4. Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments showed that the association of L. limosa with Arcobacter was driven by the transfer of hydrogen and was mutualistic, providing benefits to both partners. With whole genome sequencing and differential proteomics we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P)H accepting hydrogenase, which was expressed in the presence, but not in the absence of Arcobacter. Differential proteomics further revealed that the presence of Lenisia stimulated expression of known “virulence” factors by Arcobacter. These proteins typically enable colonization of animal cells during infection5, but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic datasets of other Breviatea4 revealed the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism6 as shown here for Arcobacter and Breviatea.
PLOS Biology | 2017
Eleni Gentekaki; Bruce A. Curtis; Courtney W. Stairs; Vladimír Klimeš; Marek Eliáš; Dayana E. Salas-Leiva; Emily K. Herman; Laura Eme; Maria Cecilia Arias; Bernard Henrissat; Frédérique Hilliou; Mary J. Klute; Hiroshi Suga; Shehre-Banoo Malik; Arthur W. Pightling; Martin Kolisko; Richard A. Rachubinski; Alexander Schlacht; Darren M. Soanes; Anastasios D. Tsaousis; John M. Archibald; Steven G. Ball; Joel B. Dacks; C. Graham Clark; Mark van der Giezen; Andrew J. Roger
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%–61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than β-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
Nature Ecology and Evolution | 2017
Michelle M. Leger; Martin Kolisko; Ryoma Kamikawa; Courtney W. Stairs; Keitaro Kume; Ivan Čepička; Jeffrey D. Silberman; Jan Andersson; Feifei Xu; Akinori Yabuki; Laura Eme; Qianqian Zhang; Kiyotaka Takishita; Yuji Inagaki; Alastair G. B. Simpson; Tetsuo Hashimoto; Andrew J. Roger
Many anaerobic microbial parasites possess highly modified mitochondria known as mitochondrion-related organelles (MROs). The best-studied of these are the hydrogenosomes of Trichomonas vaginalis and Spironucleus salmonicida, which produce ATP anaerobically through substrate-level phosphorylation with concomitant hydrogen production; and the mitosomes of Giardia intestinalis, which are functionally reduced and lack any role in ATP production. However, to understand the metabolic specializations that these MROs underwent in adaptation to parasitism, data from their free-living relatives are needed. Here, we present a large-scale comparative transcriptomic study of MROs across a major eukaryotic group, Metamonada, examining lineage-specific gain and loss of metabolic functions in the MROs of Trichomonas, Giardia, Spironucleus and their free-living relatives. Our analyses uncover a complex history of ATP production machinery in diplomonads such as Giardia, and their closest relative, Dysnectes; and a correlation between the glycine cleavage machinery and lifestyles. Our data further suggest the existence of a previously undescribed biochemical class of MRO that generates hydrogen but is incapable of ATP synthesis.
Archive | 2012
Anastasios D. Tsaousis; Michelle M. Leger; Courtney W. Stairs; Andrew J. Roger
While many multicellular anaerobes possess mitochondria that resemble those of aerobic eukaryotes, microbial eukaryotes that live exclusively in anoxic and low oxygen environments harbor mitochondrion-related organelles (MROs). Currently, these organelles are broadly classified as either hydrogenosomes (anaerobic ATP-producing organelles that produce molecular hydrogen) or mitosomes (organelles that do not generate ATP); however, ongoing studies of diverse microbial lineages are revealing a wider spectrum of functional types. In adaptation to low oxygen conditions, the MROs of anaerobic eukaryotes have acquired unique characteristics, some of which do not appear to derive from the α-proteobacterium that gave rise to the ancestral mitochondrion. These characteristics include alternative pathways for pyruvate metabolism as well as enzymes such as [FeFe]-hydrogenases that collectively function in anaerobic energy metabolism. In addition to these pathways, the mitochondrial protein import, metabolic exchange, and Fe–S cluster biosynthesis machineries are present in all MROs studied to date; these systems support the protein, solute, and energy requirements of both the organelles and the cells that harbor them. MROs represent a unique class of organelles that have successfully adapted by reduction or alteration of existing pathways as well as by acquisition of novel metabolic machineries that allowed their hosts to thrive in diverse environments without oxygen.