Covadonga Fernández-Golfín
University of Alcalá
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Covadonga Fernández-Golfín.
European Journal of Heart Failure | 2016
Piotr Ponikowski; Adriaan A. Voors; Stefan D. Anker; Héctor Bueno; John G.F. Cleland; Andrew J.S. Coats; Volkmar Falk; José Ramón González-Juanatey; Veli Pekka Harjola; Ewa A. Jankowska; Mariell Jessup; Cecilia Linde; Petros Nihoyannopoulos; John Parissis; Burkert Pieske; Jillian P. Riley; Giuseppe Rosano; Luis M. Ruilope; Frank Ruschitzka; Frans H. Rutten; Peter van der Meer; Gerasimos Filippatos; John J.V. McMurray; Victor Aboyans; Stephan Achenbach; Stefan Agewall; Nawwar Al-Attar; John Atherton; Johann Bauersachs; A. John Camm
Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chairperson) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK), Volkmar Falk (Germany), José Ramón González-Juanatey (Spain), Veli-Pekka Harjola (Finland), Ewa A. Jankowska (Poland), Mariell Jessup (USA), Cecilia Linde (Sweden), Petros Nihoyannopoulos (UK), John T. Parissis (Greece), Burkert Pieske (Germany), Jillian P. Riley (UK), Giuseppe M. C. Rosano (UK/Italy), Luis M. Ruilope (Spain), Frank Ruschitzka (Switzerland), Frans H. Rutten (The Netherlands), Peter van der Meer (The Netherlands)
Journal of The American Society of Echocardiography | 2009
Leopoldo Pérez de Isla; David Vivas Balcones; Covadonga Fernández-Golfín; Pedro Marcos-Alberca; Carlos Almería; José Luis Rodrigo; Carlos Macaya; Jose Luis Zamorano
BACKGROUND Two-dimensional (2D) wall motion-tracking echocardiography (WMT) is a useful method to measure myocardial strain, but it is very limited because acquisition and analysis are time consuming. Three-dimensional (3D) WMT is a new method that might improve diagnostic usefulness and reduce study times. The aims of this study were to compare results on 2D and 3D WMT and to compare the times for the acquisition and analysis of regional myocardial strain between the two methods. METHODS Measurements of the radial and longitudinal strain of every left ventricular (LV) segment and the time for acquisition and analysis were obtained using 3D and 2D WMT. RESULTS Thirty patients were enrolled (mean age, 57.2 +/- 19.6 years; 60% men). Three-dimensional WMT provided complete radial and longitudinal LV strain information, similar to 2D WMT (P = NS), but it was less time consuming: the times for acquisition and analysis were 14.0 +/- 1.9 minutes with 2D WMT and 5.1 +/- 1.1 minutes with 3D WMT (P < .001). Furthermore, in the same analysis, a greater number of segments could be analyzed using 3D WMT (72.4%) compared with 2D WMT (52.0%). CONCLUSIONS Three-dimensional WMT provides a faster, more complete, and similar analysis to assess LV longitudinal and radial strain compared with 2D WMT. Thus, 3D WMT is a potential clinical bedside tool for quantifying myocardial strain.
Circulation-cardiovascular Imaging | 2015
Danilo Neglia; Daniele Rovai; Chiara Caselli; Mikko Pietilä; Anna Teresinska; Santiago Aguadé-Bruix; M.N. Pizzi; Giancarlo Todiere; Alessia Gimelli; Stephen Schroeder; Tanja Drosch; Rosa Poddighe; Giancarlo Casolo; Constantinos Anagnostopoulos; Francesca Pugliese; François Rouzet; Dominique Le Guludec; Francesco Cappelli; Serafina Valente; Gian Franco Gensini; Camilla Zawaideh; Selene Capitanio; Gianmario Sambuceti; Fabio Marsico; Pasquale Perrone Filardi; Covadonga Fernández-Golfín; Luis M. Rincón; Frank P. Graner; Michiel A. de Graaf; Michael Fiechter
Background—The choice of imaging techniques in patients with suspected coronary artery disease (CAD) varies between countries, regions, and hospitals. This prospective, multicenter, comparative effectiveness study was designed to assess the relative accuracy of commonly used imaging techniques for identifying patients with significant CAD. Methods and Results—A total of 475 patients with stable chest pain and intermediate likelihood of CAD underwent coronary computed tomographic angiography and stress myocardial perfusion imaging by single photon emission computed tomography or positron emission tomography, and ventricular wall motion imaging by stress echocardiography or cardiac magnetic resonance. If ≥1 test was abnormal, patients underwent invasive coronary angiography. Significant CAD was defined by invasive coronary angiography as >50% stenosis of the left main stem, >70% stenosis in a major coronary vessel, or 30% to 70% stenosis with fractional flow reserve ⩽0.8. Significant CAD was present in 29% of patients. In a patient-based analysis, coronary computed tomographic angiography had the highest diagnostic accuracy, the area under the receiver operating characteristics curve being 0.91 (95% confidence interval, 0.88–0.94), sensitivity being 91%, and specificity being 92%. Myocardial perfusion imaging had good diagnostic accuracy (area under the curve, 0.74; confidence interval, 0.69–0.78), sensitivity 74%, and specificity 73%. Wall motion imaging had similar accuracy (area under the curve, 0.70; confidence interval, 0.65–0.75) but lower sensitivity (49%, P<0.001) and higher specificity (92%, P<0.001). The diagnostic accuracy of myocardial perfusion imaging and wall motion imaging were lower than that of coronary computed tomographic angiography (P<0.001). Conclusions—In a multicenter European population of patients with stable chest pain and low prevalence of CAD, coronary computed tomographic angiography is more accurate than noninvasive functional testing for detecting significant CAD defined invasively. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00979199.
European Journal of Echocardiography | 2013
Daniel Muñoz; Michael Markl; José Luis Moya Mur; Alex J. Barker; Covadonga Fernández-Golfín; Patrizio Lancellotti; José Luis Zamorano Gómez
Non-invasive cardiovascular imaging initially focused on heart structures, allowing the visualization of their motion and inferring its functional status from it. Colour-Doppler and cardiac magnetic resonance (CMR) have allowed a visual approach to intracardiac flow behaviour, as well as measuring its velocity at single selected spots. Recently, the application of new technologies to medical use and, particularly, to cardiology has allowed, through different algorithms in CMR and applications of ultrasound-related techniques, the description and analysis of flow behaviour in all points and directions of the selected region, creating the opportunity to incorporate new data reflecting cardiac performance to cardiovascular imaging. The following review provides an overview of the currently available imaging techniques that enable flow visualization, as well as its present and future applications based on the available literature and on-going works.
Obesity | 2011
Adriana Saltijeral; Leopoldo Pérez de Isla; Olga Pérez-Rodríguez; Santiago Rueda; Covadonga Fernández-Golfín; Carlos Almería; José Luis Rodrigo; Willem Gorissen; Juan Rementeria; Pedro Marcos-Alberca; Carlos Macaya; Jose Luis Zamorano
Obesity is considered as a strong risk factor for cardiovascular morbidity and mortality. 3D‐wall motion tracking echocardiography (3D‐WMT) provides information regarding different parameters of left ventricular (LV) myocardial deformation. Our aim was to assess the presence of early myocardial deformation abnormalities in nonselected obese children free from other cardiovascular risk factors. Thirty consecutive nonselected obese children and 42 healthy volunteer children were enrolled. None of them had any cardiovascular risk factor. Every subject underwent a 2D‐echo examination and a 3D‐WMT study. Mean age was 13.9 ± 2.56 and 13.25 ± 2.68 years in the nonobese and obese groups, respectively (59.7% and 40.3% male). Statistically significant differences were found for: interventricular septum thickness, LV posterior wall thickness, LV end‐diastolic volume, LV end‐systolic volume, left atrium volume, LV mass, and lateral annulus peak velocity. Regarding the results obtained by 3D‐WMT assessment, all the evaluated parameters were statistically significantly different between the two groups. When the influence of obesity on the different echocardiographic variables was evaluated by means of multivariate logistic regression analysis, the strongest relationship with obesity was found for LV average circumferential strain (β‐coefficient: 0.74; r2: 0.55; P: 0.003). Thus, obesity cardiomyopathy is associated not only with structural cardiac changes, but also with myocardial deformation changes. Furthermore, this association occurs as early as in the childhood and it is independent from any other cardiovascular risk factor. The most related parameter to obesity is LV circumferential strain.
Journal of The American Society of Echocardiography | 2012
Jose Alberto de Agustin; Pedro Marcos-Alberca; Covadonga Fernández-Golfín; Alexandra Gonçalves; Gisela Feltes; Iván J. Núñez-Gil; Carlos Almería; José Luis Rodrigo; Leopoldo Pérez de Isla; Carlos Macaya; Jose Luis Zamorano
BACKGROUND The two-dimensional (2D) proximal isovelocity surface area (PISA) method has some technical limitations, mainly the geometric assumptions of PISA shape required to calculate effective regurgitant orifice area (EROA). Recently developed single-beat, real-time three-dimensional (3D) color Doppler imaging allows direct measurement of PISA without geometric assumptions. The aim of this study was to validate this novel method in patients with chronic mitral regurgitation (MR). METHODS Thirty-three patients were included, 25 (75.7%) with degenerative MR and eight (24.2%) with functional MR. EROA and regurgitant volume were assessed using transthoracic 2D and 3D PISA methods. The quantitative Doppler method and 3D transesophageal echocardiographic planimetry of EROA were used as reference methods. RESULTS Both EROA and regurgitant volume assessed using the 3D PISA method had better correlations with the reference methods than conventional 2D PISA. A consistent significant underestimation of EROA and regurgitant volume using 2D PISA was observed, particularly in the assessment of eccentric jets. On the basis of 3D transesophageal echocardiographic planimetry of EROA, 14 patients had severe MR (EROA ≥ 0.4 cm(2)). Of these 14 patients, 42.8% (6 of 14) were underestimated as having nonsevere MR (EROA ≤ 0.4 cm(2)) by the 2D PISA method. In contrast, the 3D PISA method had 92.9% (13 of 14) agreement with 3D transesophageal planimetry in classifying severe MR. Good intraobserver and interobserver agreement for 3D PISA measurements was observed, with intraclass correlation coefficients of 0.96 and 0.92, respectively. CONCLUSIONS Direct measurement of PISA without geometric assumptions using single-beat, real-time 3D color Doppler echocardiography is feasible in the clinical setting. MR quantification using this methodology is more accurate than the conventional 2D PISA method.
International Journal of Cardiology | 2013
Leopoldo Pérez de Isla; Jose Luis Zamorano; Covadonga Fernández-Golfín; Sara Ciocarelli; Cecilia Corros; Tibisai Sanchez; Joaquín Ferreirós; Pedro Marcos-Alberca; Carlos Almería; José Luis Rodrigo; Carlos Macaya
BACKGROUND 3D echocardiography provides a complete evaluation of the aortic valve and adjacent structures and it improves the assessment of this cardiac region. Three-dimensional color-Doppler echocardiography (3DCDE) evaluation might improve the measurements of the functional regurgitant orifice in patients with Chronic Aortic Regurgitation (CAR). OBJECTIVES Our aim was to compare the accuracy of current echo-Doppler methods and 3DCDE for the assessment of CAR severity. The reference method used in this work was the CAR severity determined by means of cardiac magnetic resonance (CMR) METHODS: Thirty-two consecutive patients with an established diagnosis of CAR recruited in our institution comprised our study group. CAR severity was determined by conventional Echo-Doppler methods and by 3DCDE and their results were compared with those obtained by means of CMR. RESULTS Mean age was 63.0 ± 13.5 years. Twenty-two patients (68.8%) were men. Compared with the traditional echo-Doppler methods, 3DCDE evaluation had the best linear association with CMR results (3D vena contracta cross sectional area method: r = 0.88; r square = 0.77; p < 0.001. 3D vena contracta cross sectional area/left ventricular outflow tract cross sectional area method: r = 0.87; r square = 0.75; p < 0.001). The ROC analysis showed an excellent area under curve for detection of severe CAR (3D vena contracta cross sectional area method = 0.97; 3D vena contracta cross sectional area/left ventricular outflow tract cross sectional area method = 0.98). Inter- and intra-observer variability for the 3DCDE evaluation was good (ICC = 0.89 and ICC = 0.91 for inter and intra observer variability respectively). CONCLUSIONS 3DCDE is an accurate and highly reproducible diagnostic tool for estimating CAR severity. Compared with the traditional echo-Doppler methods, 3DCDE has the best agreement with the CMR determined CAR severity. Thus, 3DCDE is a diagnostic method that may improve the therapeutic management of patients with CAR.
European Journal of Echocardiography | 2016
Riccardo Liga; Jan Vontobel; Daniele Rovai; Martina Marinelli; Chiara Caselli; Mikko Pietilä; Anna Teresinska; Santiago Aguadé-Bruix; M.N. Pizzi; Giancarlo Todiere; Alessia Gimelli; Dante Chiappino; Paolo Marraccini; Stephen Schroeder; Tanja Drosch; Rosa Poddighe; Giancarlo Casolo; Constantinos Anagnostopoulos; Francesca Pugliese; François Rouzet; Dominique Le Guludec; Francesco Cappelli; Serafina Valente; Gian Franco Gensini; Camilla Zawaideh; Selene Capitanio; Gianmario Sambuceti; Fabio Marsico; Pasquale Perrone Filardi; Covadonga Fernández-Golfín
AIMS Hybrid imaging provides a non-invasive assessment of coronary anatomy and myocardial perfusion. We sought to evaluate the added clinical value of hybrid imaging in a multi-centre multi-vendor setting. METHODS AND RESULTS Fourteen centres enrolled 252 patients with stable angina and intermediate (20-90%) pre-test likelihood of coronary artery disease (CAD) who underwent myocardial perfusion scintigraphy (MPS), CT coronary angiography (CTCA), and quantitative coronary angiography (QCA) with fractional flow reserve (FFR). Hybrid MPS/CTCA images were obtained by 3D image fusion. Blinded core-lab analyses were performed for CTCA, MPS, QCA and hybrid datasets. Hemodynamically significant CAD was ruled-in non-invasively in the presence of a matched finding (myocardial perfusion defect co-localized with stenosed coronary artery) and ruled-out with normal findings (both CTCA and MPS normal). Overall prevalence of significant CAD on QCA (>70% stenosis or 30-70% with FFR≤0.80) was 37%. Of 1004 pathological myocardial segments on MPS, 246 (25%) were reclassified from their standard coronary distribution to another territory by hybrid imaging. In this respect, in 45/252 (18%) patients, hybrid imaging reassigned an entire perfusion defect to another coronary territory, changing the final diagnosis in 42% of the cases. Hybrid imaging allowed non-invasive CAD rule-out in 41%, and rule-in in 24% of patients, with a negative and positive predictive value of 88% and 87%, respectively. CONCLUSION In patients at intermediate risk of CAD, hybrid imaging allows non-invasive co-localization of myocardial perfusion defects and subtending coronary arteries, impacting clinical decision-making in almost one every five subjects.
Chest | 2015
Carolina Fernández; Carlo Bova; Olivier Sanchez; Paolo Prandoni; Mareike Lankeit; Stavros Konstantinides; Simone Vanni; Covadonga Fernández-Golfín; Roger D. Yusen; David F. Jimenez
BACKGROUND For patients with acute symptomatic pulmonary embolism (PE), the Bova score classifies their risk for PE-related complications within 30 days after diagnosis. The original Bova score was derived from 2,874 normotensive patients with acute PE who participated in one of six prospective PE studies. METHODS We retrospectively assessed the validity of the Bova risk model in normotensive patients with acute PE diagnosed in an academic urban ED. Two clinician investigators used baseline data for the models four prognostic variables to stratify patients into the three Bova risk stages (I-III) for 30-day PE-related complications. Intraclass correlation coefficient (ICC) and the κ statistic were used to assess interrater variability. RESULTS The Bova risk score classified the majority of the cohort of 1,083 patients into the lowest Bova risk stage (stage I, 80%; stage II, 15%; stage III, 5%), The primary end point occurred in 91 of the 1,083 patients (8.4%; 95% CI, 6.7%-10%) during the 30 days after PE diagnosis. Risk stage correlated with the PE-related complication rate (class I, 4.4%; class II, 18%; class III, 42%; ICC, 0.93 [95% CI, 0.92-0.94]; κ statistic, 0.80; P < .001), in-hospital complication rate (class I, 3.7%; class II, 15%; class III, 37%), and 30-day PE-related mortality (class I, 3.1%; class II, 6.8%; class III, 10.5%). CONCLUSIONS The Bova risk score accurately stratifies normotensive patients with acute PE into stages of increasing risk of PE-related complications that occur within 30 days of PE diagnosis.
Current Cardiovascular Imaging Reports | 2015
Patric Biaggi; Covadonga Fernández-Golfín; Rebecca T. Hahn; Roberto Corti
Fusion of different imaging modalities has gained increasing popularity over the last decade. However, most fusions are done between static rather than dynamic images. In order to adequately visualize the complex three-dimensional structures of the beating heart, high-temporal and spatial image resolutions are mandatory. Currently, only the combination of transesophageal echocardiography with fluoroscopy allows real-time image fusion of high quality during structural heart disease (SHD) interventions. The use of markers as well as real-time image overlay greatly facilitates communication between SHD team members and potentially increases procedural success while reducing radiation dose and use of contrast. However, to date there is only limited evidence that fusion imaging improves safety and outcomes of SHD interventions. This review highlights the benefits of fusion imaging during SHD interventions such as transseptal puncture and closure of atrial septal defects and left atrial appendage as well as interventions on the mitral and aortic valve.