Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig A. Aspinwall is active.

Publication


Featured researches published by Craig A. Aspinwall.


Journal of Biological Chemistry | 1999

Insulin-stimulated Insulin Secretion in Single Pancreatic Beta Cells

Craig A. Aspinwall; Jonathan R. T. Lakey; Robert T. Kennedy

Functional insulin receptors are known to occur in pancreatic beta cells; however, except for a positive feedback on insulin synthesis, their physiological effects are unknown. Amperometric measurements at single, primary pancreatic beta cells reveal that application of exogenous insulin in the presence or absence of nonstimulatory concentrations of glucose evokes exocytosis mediated by the beta cell insulin receptor. Insulin also elicits increases in intracellular Ca2+ concentration in beta cells but has minimal effects on membrane potential. Conditions where the insulin receptor is blocked or cell surface concentration of free insulin is reduced during exocytosis diminishes secretion induced by other secretagogues, providing evidence for direct autocrine action of insulin upon secretion from the same cell. These results indicate that the beta cell insulin receptor can mediate positive feedback for insulin secretion. The presence of a positive feedback mechanism for insulin secretion mediated by the insulin receptor provides a potential link between impaired insulin secretion and insulin resistance.


Journal of Biological Chemistry | 2000

Roles of Insulin Receptor Substrate-1, Phosphatidylinositol 3-Kinase, and Release of Intracellular Ca2+ Stores in Insulin-stimulated Insulin Secretion in β-Cells

Craig A. Aspinwall; Wei Jun Qian; Michael G. Roper; Rohit N. Kulkarni; C. Ronald Kahn; Robert T. Kennedy

The signaling pathway by which insulin stimulates insulin secretion and increases in intracellular free Ca2+ concentration ([Ca2+] i ) in isolated mouse pancreatic β-cells and clonal β-cells was investigated. Application of insulin to single β-cells resulted in increases in [Ca2+] i that were of lower magnitude, slower onset, and longer lifetime than that observed with stimulation with tolbutamide. Furthermore, the increases in [Ca2+] i originated from interior regions of the cell rather than from the plasma membrane as with depolarizing stimuli. The insulin-induced [Ca2+] i changes and insulin secretion at single β-cells were abolished by treatment with 100 nm wortmannin or 1 μm thapsigargin; however, they were unaffected by 10 μm U73122, 20 μmnifedipine, or removal of Ca2+ from the medium. Insulin-stimulated insulin secretion was also abolished by treatment with 2 μm bisindolylmaleimide I, but [Ca2+] i changes were unaffected. In an insulin receptor substrate-1 gene disrupted β-cell tumor line, insulin did not evoke either [Ca2+] i changes or insulin secretion. The data suggest that autocrine-activated increases in [Ca2+] i are due to release of intracellular Ca2+ stores, especially the endoplasmic reticulum, mediated by insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Autocrine activation of insulin secretion is mediated by the increase in [Ca2+] i and activation of protein kinase C.


Journal of Biological Chemistry | 1997

Effects of intravesicular H+ and extracellular H+ and Zn2+ on insulin secretion in pancreatic beta cells

Craig A. Aspinwall; Sunday A. Brooks; Robert T. Kennedy; Jonathan R. T. Lakey

The effects of extracellular Zn2+ and pH and intravesicular pH on insulin and 5-hydroxytryptamine (5-HT) secretion from pancreatic beta cells were investigated. Insulin and 5-HT secretion from single cells was detected by amperometry as a series of current spikes corresponding to detection of multimolecular packets secreted by exocytosis. Spike width was used as a measure of the kinetics of clearance from the cell and the area of spikes as a measure of amount released. Changes in extracellular pH from 6.9 to 7.9 caused insulin spikes to become narrower with no change in area, whereas the same treatments had no effect on 5-HT secretion. Treatment of cells with Bafilomycin A1 orN-ethylmaleimide, both of which are expected to increase intravesicular pH by inhibiting V-type H+-ATPase, had no effect on 5-HT secretion but caused insulin spikes to become more narrow. These results indicate that exposure to high pH, whether intravesicular or extracellular, accelerates release of insulin during exocytosis without affecting the amount of insulin released. Increasing extracellular Zn2+ concentration from 0 to 25 μm increased the width and decreased the area of insulin spikes without affecting 5-HT secretion. Zn2+ effects were likely exerted through a common-ion effect on Zn2+-insulin dissociation. It was concluded that intravesicular storage conditions and extracellular ions can affect free insulin concentration in the vicinity of beta cells during secretion.


Journal of Electroanalytical Chemistry | 1997

Ruthenium catalyst for amperometric determination of insulin at physiological pH

Waldemar Gorski; Craig A. Aspinwall; Jonathan R. T. Lakey; Robert T. Kennedy

A ruthenium-oxide-type catalytic film (RuOx) was produced on carbon fiber microelectrodes by cycling the electrode potential between 0.65 and −0.85V vs. SSCE at 100 V s−1 in an air-equilibrated acidic solution of RuCl3. The film catalyzes oxidation of insulin in a saline buffer at pH 7.4. The minimum number of electrons transferred during the insulin oxidation at 0.65 V is 6.7. The analytical performance of the modified electrode as an amperometric detector for insulin was characterized using flow injection analysis. Linear least squares calibration curves over the range 0.10 to 1.0 μM (five points) had slopes of 72 ± 2 pA μM−1 and correlation coefficients of 0.999 or greater. The detection limit, calculated as the concentration that would yield a signal equal to three times the root mean square noise, was 23 nM and response time (t90%) was 40 ms or less. The electrode response to 0.2 μM insulin was stable for 3 days. The modified electrode was used for amperometric detection of exocytosis from individual pancreatic s-cells.


Analyst | 2006

Nanometre-sized molecular oxygen sensors prepared from polymer stabilized phospholipid vesicles

Zhiliang Cheng; Craig A. Aspinwall

Nanometre-sized, chemically-stabilized phospholipid vesicle sensors have been developed for detection of dissolved molecular oxygen. Sensors were prepared by forming 150 nm phospholipid vesicles from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or DOPC doped with small (<1%) mole percentages of 1,2-dioleoyl-sn-glycero-3-phosphoethanol amine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE). Sensors were stabilized via cross-linking polymerization of hydrophobic methacrylate monomers partitioned into the hydrophobic interior of the DOPC bilayer. The resultant unilamellar, nanometre-sized, polymer-lipid vesicles are spherical, biocompatible and protect sensing components that are loaded into the aqueous interior of the vesicle from interfering species in the exterior environment. For O(2) detection, the oxygen-sensitive fluorescent dye, tris(1,10-phenanthroline)ruthenium(II) chloride (Ru(phen)(3)) was encapsulated into the aqueous interior of the polymerized phospholipid vesicle. NBD-PE was introduced into the phospholipid bilayer of the sensor as a reference dye, allowing ratiometric sensors to be constructed. The resultant sensors show high sensitivity, excellent reversibility and excellent linearity over a physiological range of dissolved oxygen concentrations. These results suggest that polymerized phospholipid vesicle sensors can be used for monitoring intracellular O(2) dynamics.


Journal of Chromatography B: Biomedical Sciences and Applications | 1997

Dual microcolumn immunoassay applied to determination of insulin secretion from single islets of Langerhans and insulin in serum

Hong Shen; Craig A. Aspinwall; Robert T. Kennedy

A dual microcolumn immunoassay (DMIA) was developed and applied to determination of insulin in biological samples. The DMIA utilized a protein G capillary column (150 microns I.D.) with covalently attached anti-insulin to selectively capture and concentrate insulins in a sample. Insulins retained in the capillary immunoaffinity column were desorbed and injected onto a reversed-phase capillary column (150 microns I.D.) for further separation from interferences such as cross-reactive antigens and non-specifically adsorbed sample components. Bovine, porcine and rat insulin all cross-reacted with the antibody and could be determined simultaneously. Using a UV absorbance detector, the dual microcolumn system had a detection limit of 10 fmol or 20 pM for 500-microliter sample volumes. The DMIA system was used to measure glucose-stimulated insulin secretion from single rat islets of Langerhans. Because of the separation in the second dimension, both rat I and rat II insulin could be independently determined. The system was also evaluated for determination of insulin in serum. Using microcolumns instead of conventional HPLC columns resulted in several advantages including use of less chromatographic material and improved mass detection limit.


Langmuir | 2011

Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids.

Benjamin A. Heitz; Juhua Xu; Ian W. Jones; John P. Keogh; Troy J. Comi; H. K. Hall; Craig A. Aspinwall; S. Scott Saavedra

The stabilization of suspended planar lipid membranes, or black lipid membranes (BLMs), through polymerization of mono- and bis-functionalized dienoyl lipids was investigated. Electrical properties, including capacitance, conductance, and dielectric breakdown voltage, were determined for BLMs composed of mono-DenPC, bis-DenPC, mono-SorbPC, and bis-SorbPC both prior to and following photopolymerization, with diphytanoyl phosphocholine (DPhPC) serving as a control. Poly(lipid) BLMs exhibited significantly longer lifetimes and increased the stability of air-water transfers. BLM stability followed the order bis-DenPC > mono-DenPC ≈ mono-SorbPC > bis-SorbPC. The conductance of bis-SorbPC BLMs was significantly higher than that of the other lipids, which is attributed to a high density of hydrophilic pores, resulting in relatively unstable membranes. The use of poly(lipid) BLMs as matrices for supporting the activity of an ion channel protein (IC) was explored using α-hemolysin (α-HL), a model IC. Characteristic i-V plots of α-HL were maintained following photopolymerization of bis-DenPC, mono-DenPC, and mono-SorbPC, demonstrating the utility of these materials for preparing more durable BLMs for single-channel recordings of reconstituted ICs.


Journal of the American Chemical Society | 2010

Fractional Polymerization of a Suspended Planar Bilayer Creates a Fluid, Highly Stable Membrane for Ion Channel Recordings

Benjamin A. Heitz; Ian W. Jones; H. K. Hall; Craig A. Aspinwall; S. Scott Saavedra

Suspended planar lipid membranes (or black lipid membranes (BLMs)) are widely used for studying reconstituted ion channels, although they lack the chemical and mechanical stability needed for incorporation into high-throughput biosensors and biochips. Lipid polymerization enhances BLM stability but is incompatible with ion channel function when membrane fluidity is required. Here, we demonstrate the preparation of a highly stable BLM that retains significant fluidity by using a mixture of polymerizable and nonpolymerizable phospholipids. Alamethicin, a voltage-gated peptide channel for which membrane fluidity is required for activity, was reconstituted into mixed BLMs prepared using bis-dienoyl phosphatidylcholine (bis-DenPC) and diphytanoyl phosphatidylcholine (DPhPC). Polymerization yielded BLMs that retain the fluidity required for alamethicin activity yet are stable for several days as compared to a few hours prior to polymerization. Thus, these polymerized, binary composition BLMs feature both fluidity and long-term stability.


Journal of the American Chemical Society | 2009

Enhanced Long-Term Stability for Single Ion Channel Recordings Using Suspended Poly(lipid) Bilayers

Benjamin A. Heitz; Juhua Xu; H. K. Hall; Craig A. Aspinwall; S. Scott Saavedra

Black lipid membranes (BLMs) are widely used for recording the activity of incorporated ion channel proteins. However, BLMs are inherently unstable structures that typically rupture within a few hours after formation. Here, stabilized BLMs were formed using the polymerizable lipid bis-dienoyl phosphatidylcholine (bis-DenPC) on glass pipettes of ∼10 μm (I.D.). After polymerization, these BLMs maintained steady conductance values for several weeks, as compared to a few hours for unpolymerized membranes. The activity of an ion channel, α-hemolysin, incorporated into bis-DenPC BLMs prior to polymerization, was maintained for 1 week after BLM formation and polymerization. These lifetimes are a substantial improvement over those achievable with conventional BLM technologies. Polymerized BLMs containing functional ion channels may represent an enabling technology for development of robust biosensors and drug screening devices.


Chemical Communications | 2014

Stabilized porous liposomes with encapsulated Gd-labeled dextran as a highly efficient MRI contrast agent

Zhiliang Cheng; Ajlan Al Zaki; Ian W. Jones; H. K. Hall; Craig A. Aspinwall; Andrew Tsourkas

A highly efficient contrast agent for magnetic resonance imaging was developed by encapsulating gadolinium within a stabilized porous liposome. The highly porous membrane leads to a high relaxivity of the encapsulated Gd. The stability of the liposome was improved by forming a polymer network within the bilayer membrane.

Collaboration


Dive into the Craig A. Aspinwall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Mansfield

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge