Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig A. Simmons is active.

Publication


Featured researches published by Craig A. Simmons.


Circulation | 2011

Calcific Aortic Valve Disease: Not Simply a Degenerative Process A Review and Agenda for Research From the National Heart and Lung and Blood Institute Aortic Stenosis Working Group Executive Summary: Calcific Aortic Valve Disease - 2011 Update

Nalini M. Rajamannan; Frank Evans; Elena Aikawa; Grande-Allen Kj; Linda L. Demer; Donald D. Heistad; Craig A. Simmons; Kristyn S. Masters; Patrick Mathieu; Kevin D. O'Brien; Frederick J. Schoen; Dwight A. Towler; Ajit P. Yoganathan; Catherine M. Otto

Calcific aortic valve disease (CAVD) encompasses the range of disease from initial alterations in the cell biology of the leaflets to end-stage calcification resulting in left ventricular outflow obstruction. The first detectable macroscopic changes in the leaflets, seen as calcification, or focal leaflet thickening with normal valve function, is termed aortic valve sclerosis, but it is likely that the initiating events in the disease process occur much earlier. Disease progression is characterized by a process of thickening of the valve leaflets and the formation of calcium nodules – often including the formation of actual bone – and new blood vessels, which are concentrated near the aortic surface. End stage disease, e.g. calcific aortic stenosis, is characterized pathologically by large nodular calcific masses within the aortic cusps that protrude through the outflow surfaces into the sinuses of Valsalva, interfering with opening of the cusps. For decades, this disease was thought to be a passive process in which the valve degenerates with age in association with calcium accumulation. Moreover, although calcific aortic valve disease is more common with age, it is not an inevitable consequence of aging. Instead, CAVD appears to be an actively regulated disease process that cannot be characterized exclusively as “senile” or “degenerative.” The NHLBI convened a group of scientists from different fields of study, including cardiac imaging, molecular biology, cardiovascular pathology, epidemiology, cell biology, endocrinology, bioengineering, and clinical outcomes, to review the scientific studies from the past decade in the field of CAVD. The purpose was to develop a consensus statement on the current state of translational research related to CAVD. Herein, we summarize recent scientific studies and define future directions for research to diagnose, treat and potentially prevent this complex disease process.


Journal of Biomechanics | 2003

Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway

Craig A. Simmons; Sean Matlis; Amanda J. Thornton; Shaoqiong Chen; Cun Yu Wang; David J. Mooney

Physical stimuli play critical roles in the development, regeneration, and pathology of many mesenchymal tissues, most notably bone. While mature bone cells, such as osteoblasts and osteocytes, are clearly involved in these processes, the role of their progenitors in mechanically mediated tissue responses is unknown. In this study, we investigated the effect of cyclic substrate deformation on the proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Application of equibiaxial cyclic strain (3%, 0.25Hz) to hMSCs cultured in osteogenic media inhibited proliferation and stimulated a 2.3-fold increase in matrix mineralization over unstrained cells. The strain stimulus activated the extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinase pathways, but had no effect on c-Jun N-terminal kinase phosphorylation or activity. Strain-induced mineralization was largely mediated by ERK1/2 signaling, as inhibition of ERK1/2 attenuated calcium deposition by 55%. Inhibition of the p38 pathway resulted in a more mature osteogenic phenotype, suggesting an inhibitory role for p38 signaling in the modulation of strain-induced osteogenic differentiation. These results demonstrate that mechanical signals regulate hMSC function, suggesting a critical role for physical stimulation of this specific cell population in mesenchymal tissue formation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Calcification by Valve Interstitial Cells Is Regulated by the Stiffness of the Extracellular Matrix

Cindy Ying Yin Yip; Jan-Hung Chen; Ruogang Zhao; Craig A. Simmons

Objective—Extensive remodeling of the valve ECM in calcific aortic valve sclerosis alters its mechanical properties, but little is known about the impact of matrix mechanics on the cells within the valve interstitium. In this study, the influence of matrix stiffness in modulating calcification by valve interstitial cells (VICs), and their differentiation to pathological phenotypes was assessed. Methods and Results—Primary porcine aortic VICs were cultured in standard media or calcifying media on constrained type I fibrillar collagen gels. Matrix stiffness was altered by changing only the thickness of the gels. Calcification did not occur in standard media, regardless of matrix stiffness. However, when VICs were grown in calcifying media on relatively compliant matrices with stiffness similar to that of normal tissue, they readily formed calcified aggregates of viable cells that expressed osteoblast-related transcripts and proteins. In contrast, VICs cultured in calcifying media on stiffer matrices (similar to stenotic tissue) differentiated to myofibroblasts and formed calcified aggregates that contained apoptotic cells. Actin depolymerization reduced aggregation on stiff, but not compliant, matrices. TGF-&bgr;1 potentiated aggregate formation on stiff matrices by enhancing &agr;-smooth muscle actin expression and cellular contractility, but not on compliant matrices attributable to downregulation of TGF-&bgr; receptor I. Cell contraction by VICs inhibited Akt activation and enhanced apoptosis-dependent calcification on stiff matrices. Conclusions—Differentiation of VICs to pathological phenotypes in response to biochemical cues is modulated by matrix stiffness. Although osteogenic or myofibrogenic differentiation of VICs can result in calcification, the processes are distinct.


Circulation Research | 2005

Spatial Heterogeneity of Endothelial Phenotypes Correlates With Side-Specific Vulnerability to Calcification in Normal Porcine Aortic Valves

Craig A. Simmons; Gregory R. Grant; Elisabetta Manduchi; Peter F. Davies

Calcific aortic valve sclerosis involves inflammatory processes and occurs preferentially on the aortic side of endothelialized valve leaflets. Although the endothelium is recognized to play critical roles in focal vascular sclerosis, the contributions of valvular endothelial phenotypes to aortic valve sclerosis and side-specific susceptibility to calcification are poorly understood. Using RNA amplification and cDNA microarrays, we identified 584 genes as differentially expressed in situ by the endothelium on the aortic side versus ventricular side of normal adult pig aortic valves. These differential transcriptional profiles, representative of the steady state in vivo, identify globally distinct endothelial phenotypes on opposite sides of the aortic valve. Several over-represented biological classifications with putative relevance to endothelial regulation of valvular homeostasis and aortic-side vulnerability to calcification were identified among the differentially expressed genes. Of note, multiple inhibitors of cardiovascular calcification were significantly less expressed by endothelium on the disease-prone aortic side of the valve, suggesting side-specific permissiveness to calcification. However, coexisting putative protective mechanisms were also expressed. Specifically, enhanced antioxidative gene expression and the lack of differential expression of proinflammatory molecules on the aortic side may protect against inflammation and lesion initiation in the normal valve. These data implicate the endothelium in regulating valvular calcification and suggest that spatial heterogeneity of valvular endothelial phenotypes may contribute to the focal susceptibility for lesion development.


Journal of Biomechanics | 2010

Boning up on Wolff's Law: Mechanical regulation of the cells that make and maintain bone

Jan-Hung Chen; Chao Liu; Lidan You; Craig A. Simmons

Bone tissue forms and is remodeled in response to the mechanical forces that it experiences, a phenomenon described by Wolffs Law. Mechanically induced formation and adaptation of bone tissue is mediated by bone cells that sense and respond to local mechanical cues. In this review, the forces experienced by bone cells, the mechanotransduction pathways involved, and the responses elicited are considered. Particular attention is given to two cell types that have emerged as key players in bone mechanobiology: osteocytes, the putative primary mechanosensors in intact bone; and osteoprogenitors, the cells responsible for bone formation and recently implicated in ectopic calcification of cardiovascular tissues. Mechanoregulation of bone involves a complex interplay between these cells, their microenvironments, and other cell types. Thus, dissection of the role of mechanics in regulating bone cell fate and function, and translation of that knowledge to improved therapies, requires identification of relevant cues, multifactorial experimental approaches, and advanced model systems that mimic the mechanobiological environment.


Biotechnology and Bioengineering | 2010

Influence of substrate stiffness on the phenotype of heart cells

Bashir Bhana; Rohin K. Iyer; Wen Li Kelly Chen; Ruogang Zhao; Krista L. Sider; Morakot Likhitpanichkul; Craig A. Simmons; Milica Radisic

Adult cardiomyocytes (CM) retain little capacity to regenerate, which motivates efforts to engineer heart tissues that can emulate the functional and mechanical properties of native myocardium. Although the effects of matrix stiffness on individual CM have been explored, less attention was devoted to studies at the monolayer and the tissue level. The purpose of this study was to characterize the influence of substrate mechanical stiffness on the heart cell phenotype and functional properties. Neonatal rat heart cells were seeded onto collagen‐coated polyacrylamide (PA) substrates with Youngs moduli of 3, 22, 50, and 144 kPa. Collagen‐coated glass coverslips without PA represented surfaces with effectively “infinite” stiffness. The local elastic modulus of native neonatal rat heart tissue was measured to range from 4.0 to 11.4 kPa (mean value of 6.8 kPa) and for native adult rat heart tissue from 11.9 to 46.2 kPa (mean value of 25.6 kPa), motivating our choice of the above PA gel stiffness. Overall, by 120 h of cultivation, the lowest stiffness PA substrates (3 kPa) exhibited the lowest excitation threshold (ET; 3.5 ± 0.3 V/cm), increased troponin I staining (52% positively stained area) but reduced cell density, force of contraction (0.18 ± 0.1 mN/mm2), and cell elongation (aspect ratio = 1.3–1.4). Higher stiffness (144 kPa) PA substrates exhibited reduced troponin I staining (30% positively stained area), increased fibroblast density (70% positively stained area), and poor electrical excitability. Intermediate stiffness PA substrates of stiffness comparable to the native adult rat myocardium (22–50 kPa) were found to be optimal for heart cell morphology and function, with superior elongation (aspect ratio > 4.3), reasonable ET (ranging from 3.95 ± 0.8 to 4.4 ± 0.7 V/cm), high contractile force development (ranging from 0.52 ± 0.2 to 1.60 ± 0.6 mN/mm2), and well‐developed striations, all consistent with a differentiated phenotype. Biotechnol. Bioeng. 2010;105: 1148–1160.


Journal of Dental Research | 2004

Bone Regeneration via a Mineral Substrate and Induced Angiogenesis

William L. Murphy; Craig A. Simmons; D. Kaigler; David J. Mooney

Angiogenesis and biomineral substrates play major roles in bone development and regeneration. We hypothesized that macroporous scaffolds of biomineralized 85:15 poly(lactide-co-glycolide), which locally release vascular endothelial growth factor-165 (VEGF), would direct simultaneous regeneration of bone and vascular tissue. The presence of a bone-like biomineral substrate significantly increased regeneration of osteoid matrix (32 ± 7% of total tissue area; mean ± SD; p < 0.05) and mineralized tissue (14 ± 2%; P < 0.05) within a rat cranium critical defect compared with a non-mineralized polymer scaffold (19 ± 8% osteoid and 10 ± 2% mineralized tissue). Further, the addition of VEGF to a mineralized substrate significantly increased the generation of mineralized tissue (19 ± 4%; P < 0.05) compared with mineralized substrate alone. This appeared to be due to a significant increase in vascularization throughout VEGF-releasing scaffolds (52 ± 9 vessels/mm2; P < 0.05) compared with mineralized scaffolds without VEGF (34 ± 4 vessels/mm2). Surprisingly, there was no significant difference in total osteoid between the two samples, suggesting that increased vascularization enhances mineralized tissue generation, but not necessarily osteoid formation. These results indicate that induced angiogenesis can enhance tissue regeneration, supporting the concept of therapeutic angiogenesis in tissue-engineering strategies.


Gene Therapy | 2005

Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4)

Yen-Chen Huang; Craig A. Simmons; Darnell Kaigler; Kevin G. Rice; David J. Mooney

Gene therapy approaches to bone tissue engineering have been widely explored. While localized delivery of plasmid DNA encoding for osteogenic factors is attractive for promoting bone regeneration, the low transfection efficiency inherent with plasmid delivery may limit this approach. We hypothesized that this limitation could be overcome by condensing plasmid DNA with nonviral vectors such as poly(ethylenimine) (PEI), and delivering the plasmid DNA in a sustained and localized manner from poly(lactic-co-glycolic acid) (PLGA) scaffolds. To address this possibility, scaffolds delivering plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4) were implanted into a cranial critical-sized defect for time periods up to 15 weeks. The control conditions included no scaffold (defect left empty), blank scaffolds (no delivered DNA), and scaffolds encapsulating plasmid DNA (non-condensed). Histological and microcomputed tomography analysis of the defect sites over time demonstrated that bone regeneration was significant at the defect edges and within the defect site when scaffolds encapsulating condensed DNA were placed in the defect. In contrast, bone formation was mainly confined to the defect edges within scaffolds encapsulating plasmid DNA, and when blank scaffolds were used to fill the defect. Histomorphometric analysis revealed a significant increase in total bone formation (at least 4.5-fold) within scaffolds incorporating condensed DNA, relative to blank scaffolds and scaffolds incorporating uncondensed DNA at each time point. In addition, there was a significant increase both in osteoid and mineralized tissue density within scaffolds incorporating condensed DNA, when compared with blank scaffolds and scaffolds incorporating uncondensed DNA, suggesting that delivery of condensed DNA led to more complete mineralized tissue regeneration within the defect area. This study demonstrated that the scaffold delivery system encapsulating PEI-condensed DNA encoding for BMP-4 was capable of enhancing bone formation and may find applications in other tissue types.


American Journal of Pathology | 2009

Identification and Characterization of Aortic Valve Mesenchymal Progenitor Cells with Robust Osteogenic Calcification Potential

Jan-Hung Chen; Cindy Ying Yin Yip; Eli D. Sone; Craig A. Simmons

Advanced valvular lesions often contain ectopic mesenchymal tissues, which may be elaborated by an unidentified multipotent progenitor subpopulation within the valve interstitium. The identity, frequency, and differentiation potential of the putative progenitor subpopulation are unknown. The objectives of this study were to determine whether valve interstitial cells (VICs) contain a subpopulation of multipotent mesenchymal progenitor cells, to measure the frequencies of the mesenchymal progenitors and osteoprogenitors, and to characterize the osteoprogenitor subpopulation because of its potential role in calcific aortic valve disease. The multilineage potential of freshly isolated and subcultured porcine aortic VICs was tested in vitro. Progenitor frequencies and self-renewal capacity were determined by limiting dilution and colony-forming unit assays. VICs were inducible to osteogenic, adipogenic, chondrogenic, and myofibrogenic lineages. Osteogenic differentiation was also observed in situ in sclerotic porcine leaflets. Primary VICs had strikingly high frequencies of mesenchymal progenitors (48.0 +/- 5.7%) and osteoprogenitors (44.1 +/- 12.0%). High frequencies were maintained for up to six population doublings, but decreased after nine population doublings to 28.2 +/- 9.9% and 5.8 +/- 1.3%, for mesenchymal progenitors and osteoprogenitors, respectively. We further identified the putative osteoprogenitor subpopulation as morphologically distinct cells that occur at high frequency, self-renew, and elaborate bone matrix from single cells. These findings demonstrate that the aortic valve is rich in a mesenchyma l progenitor cell population that has strong potential to contribute to valve calcification.


Circulation Research | 2011

Cell–Matrix Interactions in the Pathobiology of Calcific Aortic Valve Disease: Critical Roles for Matricellular, Matricrine, and Matrix Mechanics Cues

Jan-Hung Chen; Craig A. Simmons

The hallmarks of calcific aortic valve disease (CAVD) are the significant changes that occur in the organization, composition, and mechanical properties of the extracellular matrix (ECM), ultimately resulting in stiffened stenotic leaflets that obstruct flow and compromise cardiac function. Increasing evidence suggests that ECM maladaptations are not simply a result of valve cell dysfunction; they also contribute to CAVD progression by altering cellular and molecular signaling. In this review, we summarize the ECM changes that occur in CAVD. We also discuss examples of how the ECM influences cellular processes by signaling through adhesion receptors (matricellular signaling), by regulating the presentation and availability of growth factors and cytokines to cells (matricrine signaling), and by transducing externally applied forces and resisting cell-generated tractional forces (mechanical signaling) to regulate a wide range of pathological processes, including differentiation, fibrosis, calcification, and angiogenesis. Finally, we suggest areas for future research that should lead to new insights into bidirectional cell–ECM interactions in the aortic valve, their contributions to homeostasis and pathobiology, and possible targets to slow or prevent the progression of CAVD.

Collaboration


Dive into the Craig A. Simmons's collaboration.

Top Co-Authors

Avatar

Yu Sun

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge