Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig Campbell is active.

Publication


Featured researches published by Craig Campbell.


Qatar medical journal | 2017

The development of a mobile ECMO program

Craig Campbell; Ahmed Labib

Rationale: Transport of critically ill patients on extracorporeal membrane oxygenation (ECMO) can be challenging; however, this has been demonstrated to be safe and feasible if undertaken by adequately trained teams,1–3 with appropriate equipment and a platform that can accommodate the team and allows full access to the patient. The ECMO retrieval service is a key component of the severe respiratory failure (SRF-ECMO) program. The Hamad Medical Corporation (HMC) stakeholders realized the need for this “mobile” program as core to the ECMO program, given the geographical location of the hospital facilities and the complexity of the ECMO program. The development of mobile ECMO is built on the established multidisciplinary Safe High Acuity Adult Retrieval Program (SHAARP) partnership between the HMC Ambulance Service and Medical Intensive Care Unit (MICU). The service operates on a Hub and Spoke model, whereby patients requiring ECMO are transferred to the MICU ECMO Centre at Hamad General Hospital (HGH). The major factor that influenced the initiation of the mobile ECMO program was the need for a secure and competent transport system to the only Adult ECMO Centre in Qatar with the necessary infrastructure and expertise to handle such complex cases. Mobile ECMO team: The need for a multidisciplinary, team-based approach to ECMO retrieval and transport was realized early due to the fact that the transport of these high acuity cases needed dedicated expertise. Our team model in Qatar is composed of two ECMO consultants, an ECMO nurse, a perfusionist, a respiratory therapist, and a critical care paramedic from the Ambulance Service, and is also supported by two ambulance paramedics (driver and attendant). Transport of ECMO patients is a low volume high-risk event and hence there is a need for a specialized team. All team members received training and participated in retrievals in the UK on mobile ECMO. There is an ongoing training program,4 covering emergencies and techniques for safe movement of patients. The team dedication has resulted in the program being a success. To date, 13 retrievals have been successfully carried out including one intercontinental air-transfer, all without adverse outcomes. Mobile ECMO logistics: The mobile ECMO platform and trolley were custom designed. There was a recognition that a mobile SRF-ECMO service may require the team to transport a patient on ECMO, or to first stabilize on current therapy and then transport the patient to the acute care hospital to perform cannulation at a later time; if required. As such, the adult Intensive Care Trolleys have been designed to provide ergonomic, safe, and comfortable transportation of high dependency intensive care patients, either on ECMO or on standard intensive care therapy. It is configured to meet the specific needs of the clinical team and designed to accommodate a wide range of medical apparatus. This stretcher carries all the basic intensive care monitoring accoutrements and is suited for pre-hospital, and inter- and intra-hospital transit care. The stretcher can hold a transport ventilator, monitor, infusion pumps, oxygen cylinders, a medication bag, and a miscellaneous pack. The mobile intensive care unit can safely accommodate the whole five-person team and specialized equipment in an appropriate working environment, with 360-degree access to the patient and equipment, in addition to the two paramedic crew driving the vehicle.


Qatar medical journal | 2017

ECMO retrieval: A case for Critical Care Paramedic integration into the team

Craig Campbell

Introduction: The provision of an effective extracorporeal membrane oxygenation (ECMO) service requires a dedicated unit with sufficient caseload and access to specialised resources.1 Moving unstable patients, with refractory respiratory failure on conventional mechanical ventilation, to the specialised centre for ECMO poses great risk to the patient.1,2 Therefore, there is a need to have mobile ECMO capabilities with specialised retrieval teams, capable of initiating ECMO in the referral hospital and safely transporting the patient to the ECMO centre. Transport of patients on ECMO has been demonstrated to be safe, if undertaken by well-trained teams2–7 providing seamless care.8 However, most studies pay little attention to the role of the ambulance service within the ECMO team. The ideal configuration of the team has yet to be demonstrated, with different regions using different models.2 The ELSO guidelines recommend, beside the ECMO specialist and cannulating physician, a transport nurse or respiratory therapist to provide ongoing critical care to the patient.9 This recommendation presupposes a model where nurses are routinely involved in interfacility transport of patients. It further ignores the role of ambulance service staff, who potentially play an integral role in the movement of the patient. This model is by no means universal, and certainly not the case in Qatar, hence the decision to include Critical Care Paramedics (CCP) as an integral part of the Qatar ECMO team, in service of safe ECMO patient transport. Multidisciplinary team dynamics in patient transport: As with the management of the ECMO patient within the ICU unit, the success of each retrieval and transport depends as much on team dynamics as on the technical skills of the individual specialities represented in the team.10 Due to the specialised nature of ECMO, the retrieval team cannot rely on the referring hospital having all the required equipment. Thus, the team needs to be self-sufficient and the team members interdependent on each other. Prior to activation of the team, each speciality is responsible for ensuring their specific retrieval equipment has been checked and sealed in readiness for the next retrieval. As part of this process, the ECMO retrieval team developed a set of checklists for each of the equipment sets (checked weekly) and a master retrieval checklist to be used by the CCP on activation of the team. The use of checklists ensures that all equipment boxes, required for cannulation and patient care, are loaded into the transport vehicles.9 The design of the retrieval service vehicle and High Acuity Patient Transport Trolley has factored in the principle of redundancy, realising that the patient on ECMO has limited physiological reserve if equipment, power or oxygen supply failure should occur. The close working relationship between the ECMO director and the Ambulance Service staff has helped develop a platform and system that provides redundancy and limits the requirement for the ECMO team to have to carry additional backup equipment. Once at the referring hospital, each member of the team has preassigned roles. The ECMO physician takes lead on assessment of the patient, deciding on the eligibility for ECMO. The decision to initiate ECMO requires consent from the family to begin. During that time, the rest of the team begin the process of identifying additional resources within the hospital. The ECMO specialist nurse begins assessing the needs of the patient prior to movement. Once consent is obtained, the team can begin the process of preparing the patient for transfer to theatre (unless the decision has been made to cannulate in the ICU) and to prepare the operating theatre for cannulation. Delegating the role of patient safety and logistics to the CCP frees up the need for the lead physician to multitask, thus being able to concentrate on the task of patient assessment, reducing the risk of error and co-ordinating the requirements for cannulation of the patient at the receiving hospital. The CCP also plays a support role for the ECMO nurse specialist in preparing the patient for transfer to the theatre (infusions, monitoring and ventilation), and becomes lead for the safe movement of the patient from the unit to the theatre, and later to the ambulance. Each step in the patient preparation and movement is confirmed as per the safety checklist to ensure nothing is missed, and the risk of accidental dislodgment of invasive lines or ET tube is minimised. Having a dedicated safety person allows other team members to concentrate on their primary task. Background:Building the Ambulance Service–Medical Intensive Care Unit relationship: Following the outbreak of MERS coronavirus, the leadership of HMC made a decision to develop a severe respiratory failure (SRF) service, including the implementation of an ECMO programme, as none existed in the country or the region. This service would be based at Hamad General Hospital in Doha. A centralised model of care would be used, thus requiring the establishment of an ECMO retrieval service. The project development was tasked to the MICU Director, who also held the Deputy Medical Directorship of the Ambulance Service. This relationship had previously led to the Ambulance Service and the Medical Intensive Care Unit co-developing a multidisciplinary, simulation-based training programme in preparation for the launching of a High-Acuity Adult Retrieval Programme. This model paired MICU intensivists with Critical Care and Ambulance Paramedics on a purpose-built Mobile Intensive Care Ambulance, with the CCP as team leader. Based on the success of this programme, it was decided to include a small group of experienced CCPs in the ECMO training programme, which was initiated in November 2013. The envisaged role of the CCPs was to undertake the logistic lead and patient and team safety role on ECMO retrieval development. As part of the initial training programme, two of the CCPs were included in the team that were sent for training with an established ECMO service in the UK. Their role was to get insight into the logistical requirements and evolution of ECMO retrieval and then become the project leads for the development of the Ambulance Services capacity to support a seamless ECMO retrieval service. The ECMO retrieval team: In Qatar, the ECMO retrieval team is made up of either two ECMO specialists or an ECMO specialist and a MICU consultant, with an ECMO specialist nurse, perfusionist and respiratory therapist. In addition, the team has a CCP as an integral member of the team, with a central role in logistics and safety. The CCP helps link the decision-making and execution of patient movement and transport to any additional resources within the Ambulance Service that may be required and adds additional clinical capacity to the retrieval team. In many countries, Critical Care or Intensive Care Paramedics play a central role in the interfacility transport of critically ill or injured patients, either by ground or air ambulance. Advanced Life Support Paramedics receive additional training in Critical Care Transport and Aeromedical Medicine, and then, work in multidisciplinary teams geared to the safe transport of high acuity patients, either by ground or by air. These Critical Care Teams may be composed of two CCPs, or a CCP working with a Critical Care Nurse or Physician. CCPs develop their skills of leadership, required for working in high-stress environments, through their training and through experience working in complex and austere clinical environments. In many of the countries mentioned above, paramedics are required to gain experience in the emergency setting, before being permitted to transfer into Critical Care Transport teams. This model ensures that the CCP/ICP is not only competent in Advanced Life Support skills but has had time to master the complexity of assessing and managing critical patients, patient advocacy and professional engagement with other healthcare professionals. Qatar recruits its CCPs from Australia, Canada, New Zealand, USA and South Africa. All these countries have established Critical Care Transport programmes through tertiary-based paramedic education (Associate Degrees or Degrees). CCPs, within the Ambulance Service in Qatar, are able to provide advanced airway interventions (rapid sequence induction and intubation), use multimodal mechanical ventilation and provide advanced cardiovascular life support – including infusion devices, inotropes, external pacing and mechanical chest compression devices. In addition, the group of CCPs selected to be part of the ECMO programme all had more than 10 years of clinical experience and were trained and experienced in aeromedical work. Being familiar with the equipment and systems of the Ambulance Service, the competencies of interfacility patient transport and having been trained with the MICU multidisciplinary team in the process of ECMO, allowed them a unique ability to take on a lead role in the logistics process and patient safety roles and provide an additional resource for the provision of airway care, ventilation or advanced cardiac life support. From late 2014 to date, the Qatar ECMO team have undertaken 13 retrievals, including one international transport from Qatar to India, without any adverse incidents. The strong relationship between the ECMO team and the Ambulance Service has facilitated the development of a safe and effective retrieval service. Future plans to include the initiation of ECMO transport simulations to ensure maintenance of skills and develop team dynamics with new staff being added to the Service.


Qatar medical journal | 2017

Can simulation improve ECMO care

Guillaume Alinier; Craig Campbell; Ahmed Labib; Tejas Mehta; Ali Ait Hssain; Emad Ali Hamad Almomani; Ibrahim Fawzy Hassan


Qatar medical journal | 2017

ECMO transport: The role of Critical Care Paramedics

Craig Campbell


Journal of emergency medicine, trauma and acute care | 2016

Simplifying simulated practice for healthcare professionals and educators

Guillaume Alinier; John Meyer; Naidoo; Craig Campbell


Teaching Matters 2017 | 2017

Conversations challenging assumptions in teaching and learning spaces

Craig Campbell; M Heydari; H Maxwell; N Oprescu; Re Say; B Tran; R Einboden; S Farrington; Greg Rickard; Cl Beh; Grazyna Stankiewicz; Marguerite Bramble


Archive | 2016

Team-Based Approach To Ecmo And High Acuity Adult Patient Retrievals In Qatar

Ibrahim Fawzy Hassan; Guillaume Alinier; Majid Hijjeh; Abdul Salam Saif Ibrahim; Ahmed Lutfe Mohamad Abdussalam; Ali Ait Hssain; Ahmed Shehatta; Tasleem Mohd; Hani Jaouni; Craig Campbell; Salomi Dreyer; Loua Al Shaikh; Talib Yaseen; Wael Abdaljawad; Ann Marie Cannaby


Archive | 2016

Introduction to Respiratory ECMO Course

Ibrahim Fawzy Hassan; Ahmed Shehatta; Ali Ait Hssain; Tasleem Mohd; Arzak Hamed; Megha Kample; Naseem Albadw; Craig Campbell; Guillaume Alinier; Abeer Ahmed; Sameera Al-Maraghi; Ibrahim Musa Ibrahim; Dana Bakdach


Archive | 2016

Development of the first Adult Middle East Extra-Corporal Membrane Oxygenation (ECMO) simulation course

Guillaume Alinier; Ibrahim Fawzy Hassan; Craig Campbell; Ali Ait Hssain; Hani Jaouni; Tasleem Mohd; Ahmed Shehatta; Ahmed Lutfi; Arzak Hamed; Abeer Ahmed; Sameera Al-Maraghi; Brian Racela; Megha Kample; Ibrahim Musa Ibrahim; Naseem Albadw; Abdul Salam Saif Ibrahim


Journal of emergency medicine, trauma and acute care | 2016

Qatar ambulance service and Hamad General Hospital Emergency Department staff's perception of current patient handover practice

Ibrahim Abu Jundi; Ahmad Abujaber; Guillaume Alinier; Craig Campbell; John Meyer; Loua Al Shaikh; Peter Cameron; Sandra Rull; Hany Kamel; Kevin Govender

Collaboration


Dive into the Craig Campbell's collaboration.

Top Co-Authors

Avatar

Guillaume Alinier

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Loua Al Shaikh

Hamad Medical Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Bowen

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Howard

Hamad Medical Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H Maxwell

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge