Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig Carson is active.

Publication


Featured researches published by Craig Carson.


Nature Communications | 2011

P-Rex1 is required for efficient melanoblast migration and melanoma metastasis

Colin R. Lindsay; Samuel Lawn; Andrew D. Campbell; William J. Faller; Florian Rambow; Richard L. Mort; Paul Timpson; Ang Li; Patrizia Cammareri; Rachel A. Ridgway; Jennifer P. Morton; Brendan Doyle; Shauna Hegarty; Mairin Rafferty; Ian Murphy; Enda W. McDermott; Kieran Sheahan; Katherine H. Pedone; Alexander J. Finn; Pamela A. Groben; Nancy E. Thomas; Honglin Hao; Craig Carson; Jim C. Norman; Laura M. Machesky; William M. Gallagher; Ian J. Jackson; Leon Van Kempen; Friedrich Beermann; Channing J. Der

Metastases are the major cause of death from melanoma, a skin cancer that has the fastest rising incidence of any malignancy in the Western world. Molecular pathways that drive melanoblast migration in development are believed to underpin the movement and ultimately the metastasis of melanoma. Here we show that mice lacking P-Rex1, a Rac-specific Rho GTPase guanine nucleotide exchange factor, have a melanoblast migration defect during development evidenced by a white belly. Moreover, these P-Rex1(-/-) mice are resistant to metastasis when crossed to a murine model of melanoma. Mechanistically, this is associated with P-Rex1 driving invasion in a Rac-dependent manner. P-Rex1 is elevated in the majority of human melanoma cell lines and tumour tissue. We conclude that P-Rex1 has an important role in melanoblast migration and cancer progression to metastasis in mice and humans.


Journal of Clinical Investigation | 2013

MERTK receptor tyrosine kinase is a therapeutic target in melanoma

Jennifer Schlegel; Maria J. Sambade; Susan Sather; Stergios J. Moschos; Aik Choon Tan; Amanda Winges; Deborah DeRyckere; Craig Carson; Dimitri G. Trembath; John J. Tentler; S. Gail Eckhardt; Pei Fen Kuan; Ronald L. Hamilton; Lyn M. Duncan; C. Ryan Miller; Nana Nikolaishvili-Feinberg; Bentley R. Midkiff; Jing Liu; Weihe Zhang; Chao Yang; Xiaodong Wang; Stephen V. Frye; H. Shelton Earp; Janiel M. Shields; Douglas K. Graham

Metastatic melanoma is one of the most aggressive forms of cutaneous cancers. Although recent therapeutic advances have prolonged patient survival, the prognosis remains dismal. C-MER proto-oncogene tyrosine kinase (MERTK) is a receptor tyrosine kinase with oncogenic properties that is often overexpressed or activated in various malignancies. Using both protein immunohistochemistry and microarray analyses, we demonstrate that MERTK expression correlates with disease progression. MERTK expression was highest in metastatic melanomas, followed by primary melanomas, while the lowest expression was observed in nevi. Additionally, over half of melanoma cell lines overexpressed MERTK compared with normal human melanocytes; however, overexpression did not correlate with mutations in BRAF or RAS. Stimulation of melanoma cells with the MERTK ligand GAS6 resulted in the activation of several downstream signaling pathways including MAPK/ERK, PI3K/AKT, and JAK/STAT. MERTK inhibition via shRNA reduced MERTK-mediated downstream signaling, reduced colony formation by up to 59%, and diminished tumor volume by 60% in a human melanoma murine xenograft model. Treatment of melanoma cells with UNC1062, a novel MERTK-selective small-molecule tyrosine kinase inhibitor, reduced activation of MERTK-mediated downstream signaling, induced apoptosis in culture, reduced colony formation in soft agar, and inhibited invasion of melanoma cells. This work establishes MERTK as a therapeutic target in melanoma and provides a rationale for the continued development of MERTK-targeted therapies.


Pigment Cell & Melanoma Research | 2011

DNA‐methylation profiling distinguishes malignant melanomas from benign nevi

Kathleen Conway; Sharon N. Edmiston; Zakaria S. Khondker; Pamela A. Groben; Xin Zhou; Haitao Chu; Pei Fen Kuan; Honglin Hao; Craig Carson; Marianne Berwick; David W. Olilla; Nancy E. Thomas

DNA methylation, an epigenetic alteration typically occurring early in cancer development, could aid in the molecular diagnosis of melanoma. We determined technical feasibility for high‐throughput DNA‐methylation array‐based profiling using formalin‐fixed paraffin‐embedded tissues for selection of candidate DNA‐methylation differences between melanomas and nevi. Promoter methylation was evaluated in 27 common benign nevi and 22 primary invasive melanomas using a 1505 CpG site microarray. Unsupervised hierarchical clustering distinguished melanomas from nevi; 26 CpG sites in 22 genes were identified with significantly different methylation levels between melanomas and nevi after adjustment for age, sex, and multiple comparisons and with β‐value differences of ≥0.2. Prediction analysis for microarrays identified 12 CpG loci that were highly predictive of melanoma, with area under the receiver operating characteristic curves of >0.95. Of our panel of 22 genes, 14 were statistically significant in an independent sample set of 29 nevi (including dysplastic nevi) and 25 primary invasive melanomas after adjustment for age, sex, and multiple comparisons. This first report of a DNA‐methylation signature discriminating melanomas from nevi indicates that DNA methylation appears promising as an additional tool for enhancing melanoma diagnosis.


Pigment Cell & Melanoma Research | 2014

Targeted Next Generation Sequencing Identifies Clinically Actionable Mutations in Patients with Melanoma

William R. Jeck; Joel S. Parker; Craig Carson; Janiel M. Shields; Maria J. Sambade; Eldon Peters; Christin E. Burd; Nancy E. Thomas; Derek Y. Chiang; Wenjin Liu; David A. Eberhard; David W. Ollila; Juneko E. Grilley-Olson; Stergios J. Moschos; D. Neil Hayes; Norman E. Sharpless

Somatic sequencing of cancers has produced new insight into tumorigenesis, tumor heterogeneity, and disease progression, but the vast majority of genetic events identified are of indeterminate clinical significance. Here, we describe a NextGen sequencing approach to fully analyzing 248 genes, including all those of known clinical significance in melanoma. This strategy features solution capture of DNA followed by multiplexed, high‐throughput sequencing and was evaluated in 31 melanoma cell lines and 18 tumor tissues from patients with metastatic melanoma. Mutations in melanoma cell lines correlated with their sensitivity to corresponding small molecule inhibitors, confirming, for example, lapatinib sensitivity in ERBB4 mutant lines and identifying a novel activating mutation of BRAF. The latter event would not have been identified by clinical sequencing and was associated with responsiveness to a BRAF kinase inhibitor. This approach identified focal copy number changes of PTEN not found by standard methods, such as comparative genomic hybridization (CGH). Actionable mutations were found in 89% of the tumor tissues analyzed, 56% of which would not be identified by standard‐of‐care approaches. This work shows that targeted sequencing is an attractive approach for clinical use in melanoma.


Pigment Cell & Melanoma Research | 2012

A prognostic signature of defective p53-dependent G1 checkpoint function in melanoma cell lines

Craig Carson; Bernard Omolo; Haitao Chu; Yingchun Zhou; Maria J. Sambade; Eldon Peters; Patrick Tompkins; Dennis A. Simpson; Nancy E. Thomas; Cheng Fan; Alain Sarasin; Philippe Dessen; Janiel M. Shields; Joseph G. Ibrahim; William K. Kaufmann

Melanoma cell lines and normal human melanocytes (NHM) were assayed for p53‐dependent G1 checkpoint response to ionizing radiation (IR)‐induced DNA damage. Sixty‐six percent of melanoma cell lines displayed a defective G1 checkpoint. Checkpoint function was correlated with sensitivity to IR with checkpoint‐defective lines being radio‐resistant. Microarray analysis identified 316 probes whose expression was correlated with G1 checkpoint function in melanoma lines (P ≤ 0.007) including p53 transactivation targets CDKN1A, DDB2, and RRM2B. The 316 probe list predicted G1 checkpoint function of the melanoma lines with 86% accuracy using a binary analysis and 91% accuracy using a continuous analysis. When applied to microarray data from primary melanomas, the 316 probe list was prognostic of 4‐yr distant metastasis‐free survival. Thus, p53 function, radio‐sensitivity, and metastatic spread may be estimated in melanomas from a signature of gene expression.


Pigment Cell & Melanoma Research | 2014

DNA methylation profiles in primary cutaneous melanomas are associated with clinically significant pathologic features.

Nancy E. Thomas; Nathaniel A. Slater; Sharon N. Edmiston; Xin Zhou; Pei Fen Kuan; Pamela A. Groben; Craig Carson; Honglin Hao; Eloise Parrish; Stergios J. Moschos; Marianne Berwick; David W. Ollila; Kathleen Conway

DNA methylation studies have elucidated a methylation signature distinguishing primary melanomas from benign nevi and provided new insights about genes that may be important in melanoma development. However, it is unclear whether methylation differences among primary melanomas are related to tumor pathologic features with known clinical significance. We utilized the Illumina GoldenGate Cancer Panel array to investigate the methylation profiles of 47 primary cutaneous melanomas. Arraywide methylation patterns revealed a positive association of methylation with Breslow thickness and mutated BRAF, a negative association with mitotic rate, and a weak association with ulceration. Hierarchical clustering on CpG sites exhibiting the most variable methylation (n = 235) divided the melanoma samples into three clusters, including a highly methylated cluster that was positively associated with Breslow thickness and an intermediately methylated cluster associated with Breslow thickness and mitotic rate. Our findings provide support for the existence of methylation‐defined subsets in melanomas with increased methylation associated with Breslow thickness.


Cell Cycle | 2013

A prognostic signature of G₂ checkpoint function in melanoma cell lines

Bernard Omolo; Craig Carson; Haitao Chu; Yingchun Zhou; Dennis A. Simpson; Jill E. Hesse; Richard S. Paules; Kristine Nyhan; Joseph G. Ibrahim; William K. Kaufmann

As DNA damage checkpoints are barriers to carcinogenesis, G2 checkpoint function was quantified to test for override of this checkpoint during melanomagenesis. Primary melanocytes displayed an effective G2 checkpoint response to ionizing radiation (IR)-induced DNA damage. Thirty-seven percent of melanoma cell lines displayed a significant defect in G2 checkpoint function. Checkpoint function was melanoma subtype-specific with “epithelial-like” melanoma lines, with wild type NRAS and BRAF displaying an effective checkpoint, while lines with mutant NRAS and BRAF displayed defective checkpoint function. Expression of oncogenic B-Raf in a checkpoint-effective melanoma attenuated G2 checkpoint function significantly but modestly. Other alterations must be needed to produce the severe attenuation of G2 checkpoint function seen in some BRAF-mutant melanoma lines. Quantitative trait analysis tools identified mRNA species whose expression was correlated with G2 checkpoint function in the melanoma lines. A 165 gene signature was identified with a high correlation with checkpoint function (p < 0.004) and low false discovery rate (≤ 0.077). The G2 checkpoint gene signature predicted G2 checkpoint function with 77–94% accuracy. The signature was enriched in lysosomal genes and contained numerous genes that are associated with regulation of chromatin structure and cell cycle progression. The core machinery of the cell cycle was not altered in checkpoint-defective lines but rather numerous mediators of core machinery function were. When applied to an independent series of primary melanomas, the predictive G2 checkpoint signature was prognostic of distant metastasis-free survival. These results emphasize the value of expression profiling of primary melanomas for understanding melanoma biology and disease prognosis.


Environmental and Molecular Mutagenesis | 2014

Mechanisms of chromosomal instability in melanoma

William K. Kaufmann; Craig Carson; Bernard Omolo; Adam J. Filgo; Maria J. Sambade; Dennis A. Simpson; Janiel M. Shields; Joseph G. Ibrahim; Nancy E. Thomas

A systems biology approach was applied to investigate the mechanisms of chromosomal instability in melanoma cell lines. Chromosomal instability was quantified using array comparative genomic hybridization to identify somatic copy number alterations (deletions and duplications). Primary human melanocytes displayed an average of 8.5 alterations per cell primarily representing known polymorphisms. Melanoma cell lines displayed 25 to 131 alterations per cell, with an average of 68, indicative of chromosomal instability. Copy number alterations included approximately equal numbers of deletions and duplications with greater numbers of hemizygous (−1,+1) alterations than homozygous (−2,+2). Melanoma oncogenes, such as BRAF and MITF, and tumor suppressor genes, such as CDKN2A/B and PTEN, were included in these alterations. Duplications and deletions were functional as there were significant correlations between DNA copy number and mRNA expression for these genes. Spectral karyotype analysis of three lines confirmed extensive chromosomal instability with polyploidy, aneuploidy, deletions, duplications, and chromosome rearrangements. Bioinformatic analysis identified a signature of gene expression that was correlated with chromosomal instability but this signature provided no clues to the mechanisms of instability. The signature failed to generate a significant (P = 0.105) prediction of melanoma progression in a separate dataset. Chromosomal instability was not correlated with elements of DNA damage response (DDR) such as radiosensitivity, nucleotide excision repair, expression of the DDR biomarkers γH2AX and P‐CHEK2, nor G1 or G2 checkpoint function. Chromosomal instability in melanoma cell lines appears to influence gene function but it is not simply explained by alterations in the system of DDR. Environ. Mol. Mutagen. 55:457–471, 2014.


Pigment Cell & Melanoma Research | 2016

Effective intra-S checkpoint responses to UVC in primary human melanocytes and melanoma cell lines

Marila Cordeiro-Stone; John J. McNulty; Christopher D. Sproul; Paul D. Chastain; Eugene A. Gibbs-Flournoy; Yingchun Zhou; Craig Carson; Shangbang Rao; David L. Mitchell; Dennis A. Simpson; Nancy E. Thomas; Joseph G. Ibrahim; William K. Kaufmann

The objective of this study was to assess potential functional attenuation or inactivation of the intra‐S checkpoint during melanoma development. Proliferating cultures of skin melanocytes, fibroblasts, and melanoma cell lines were exposed to increasing fluences of UVC and intra‐S checkpoint responses were quantified. Melanocytes displayed stereotypic intra‐S checkpoint responses to UVC qualitatively and quantitatively equivalent to those previously demonstrated in skin fibroblasts. In comparison with fibroblasts, primary melanocytes displayed reduced UVC‐induced inhibition of DNA strand growth and enhanced degradation of p21Waf1 after UVC, suggestive of enhanced bypass of UVC‐induced DNA photoproducts. All nine melanoma cell lines examined, including those with activating mutations in BRAF or NRAS oncogenes, also displayed proficiency in activation of the intra‐S checkpoint in response to UVC irradiation. The results indicate that bypass of oncogene‐induced senescence during melanoma development was not associated with inactivation of the intra‐S checkpoint response to UVC‐induced DNA replication stress.


Clinical Cancer Research | 2015

IL2 Inducible T-cell Kinase, a Novel Therapeutic Target in Melanoma.

Craig Carson; Stergios J. Moschos; Sharon N. Edmiston; David B. Darr; Nana Nikolaishvili-Feinberg; Pamela A. Groben; Xin Zhou; Pei Fen Kuan; Shaily Pandey; Keefe T. Chan; Jamie L. Jordan; Honglin Hao; Jill S. Frank; Dennis A. Hopkinson; David C. Gibbs; Virginia D. Alldredge; Eloise Parrish; Sara C. Hanna; Paula Berkowitz; David S. Rubenstein; C. Ryan Miller; James E. Bear; David W. Ollila; Norman E. Sharpless; Kathleen Conway; Nancy E. Thomas

Purpose: IL2 inducible T-cell kinase (ITK) promoter CpG sites are hypomethylated in melanomas compared with nevi. The expression of ITK in melanomas, however, has not been established and requires elucidation. Experimental Design: An ITK-specific monoclonal antibody was used to probe sections from deidentified, formalin-fixed paraffin-embedded tumor blocks or cell line arrays and ITK was visualized by IHC. Levels of ITK protein differed among melanoma cell lines and representative lines were transduced with four different lentiviral constructs that each contained an shRNA designed to knockdown ITK mRNA levels. The effects of the selective ITK inhibitor BI 10N on cell lines and mouse models were also determined. Results: ITK protein expression increased with nevus to metastatic melanoma progression. In melanoma cell lines, genetic or pharmacologic inhibition of ITK decreased proliferation and migration and increased the percentage of cells in the G0–G1 phase. Treatment of melanoma-bearing mice with BI 10N reduced growth of ITK-expressing xenografts or established autochthonous (Tyr-Cre/Ptennull/BrafV600E) melanomas. Conclusions: We conclude that ITK, formerly considered an immune cell–specific protein, is aberrantly expressed in melanoma and promotes tumor development and progression. Our finding that ITK is aberrantly expressed in most metastatic melanomas suggests that inhibitors of ITK may be efficacious for melanoma treatment. The efficacy of a small-molecule ITK inhibitor in the Tyr-Cre/Ptennull/BrafV600E mouse melanoma model supports this possibility. Clin Cancer Res; 21(9); 2167–76. ©2015 AACR.

Collaboration


Dive into the Craig Carson's collaboration.

Top Co-Authors

Avatar

Nancy E. Thomas

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Stergios J. Moschos

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Janiel M. Shields

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Maria J. Sambade

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Pamela A. Groben

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Ollila

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Dennis A. Simpson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Honglin Hao

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Joseph G. Ibrahim

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge