Craig D. Ellermeier
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Craig D. Ellermeier.
Gene | 2002
Craig D. Ellermeier; Anuradha Janakiraman; James M. Slauch
A simple method for the construction of targeted transcriptional and translational fusions to the lac operon using FLP mediated site-specific recombination is described. Conditional plasmids containing promoterless lacZY genes and the FLP recognition target (FRT) site in both orientations were constructed for generating transcriptional fusions. Similarly, a plasmid used to create translational fusions was constructed in which the endogenous translational start of lacZ has been removed. These plasmids can be transformed into strains containing a single FRT site, which was previously integrated downstream of the promoter of interest using the lambda Red recombination method. The FLP protein produced from a helper plasmid that contains a conditional origin of replication promotes site-specific recombination between the FRT sites, resulting in an integrated lac fusion to the gene of interest. Transcriptional fusions to the Salmonella typhimurium genes sodCII and sitA were constructed using this method and shown to respond appropriately to mutations in the respective regulatory genes, rpoS and fur. Translational fusions were also constructed using this method. In this case, expression of beta-galactosidase was dependent on translation of the target protein. Given that the FLP recombinase does not require host factors for function and that this method requires no molecular cloning, this method should be applicable for the analysis of gene expression in a variety of organisms.
Molecular Microbiology | 2005
Craig D. Ellermeier; Jeremy R. Ellermeier; James M. Slauch
Salmonella enterica serovar Typhimurium invades intestinal epithelial cells using a type three secretion system (TTSS) encoded on Salmonella Pathogenicity Island 1 (SPI1). The SPI1 TTSS injects effector proteins into the cytosol of host cells where they promote actin rearrangement and engulfment of the bacteria. We previously identified RtsA, an AraC‐like protein similar to the known HilC and HilD regulatory proteins. Like HilC and HilD, RtsA activates expression of SPI1 genes by binding upstream of the master regulatory gene hilA to induce its expression. HilA activates the SPI1 TTSS structural genes. Here we present evidence that hilA expression, and hence the SPI1 TTSS, is controlled by a feedforward regulatory loop. We demonstrate that HilC, HilD and RtsA are each capable of independently inducing expression of the hilC, hilD and rtsA genes, and that each can independently activate hilA. Using competition assays in vivo, we show that each of the hilA regulators contribute to SPI1 induction in the intestine. Of the three, HilD has a predominant role, but apparently does not act alone either in vivo or in vitro to sufficiently activate SPI1. The two‐component regulatory systems, SirA/BarA and OmpR/EnvZ, function through HilD, thus inducing hilC, rtsA and hilA. However, the two‐component systems are not responsible for environmental regulation of SPI1. Rather, we show that ‘SPI1 inducing conditions’ cause independent activation of the rtsA, hilC and hilD genes in the absence of known regulators. Our model of SPI1 regulation provides a framework for future studies aimed at understanding this complicated regulatory network.
Journal of Bacteriology | 2003
Craig D. Ellermeier; James M. Slauch
Salmonella enterica serovar Typhimurium encounters numerous host environments and defense mechanisms during the infection process. The bacterium responds by tightly regulating the expression of virulence genes. We identified two regulatory proteins, termed RtsA and RtsB, which are encoded in an operon located on an island integrated at tRNA(PheU) in S. enterica serovar Typhimurium. RtsA belongs to the AraC/XylS family of regulators, and RtsB is a helix-turn-helix DNA binding protein. In a random screen, we identified five RtsA-regulated fusions, all belonging to the Salmonella pathogenicity island 1 (SPI1) regulon, which encodes a type III secretion system (TTSS) required for invasion of epithelial cells. We show that RtsA increases expression of the invasion genes by inducing hilA expression. RtsA also induces expression of hilD, hilC, and the invF operon. However, induction of hilA is independent of HilC and HilD and is mediated by direct binding of RtsA to the hilA promoter. The phenotype of an rtsA null mutation is similar to the phenotype of a hilC mutation, both of which decrease expression of SPI1 genes approximately twofold. We also show that RtsA can induce expression of a SPI1 TTSS effector, slrP, independent of any SPI1 regulatory protein. RtsB represses expression of the flagellar genes by binding to the flhDC promoter region. Repression of the positive activators flhDC decreases expression of the entire flagellar regulon. We propose that RtsA and RtsB coordinate induction of invasion and repression of motility in the small intestine.
Cell | 2006
Craig D. Ellermeier; Errett C. Hobbs; José Eduardo González-Pastor; Richard Losick
We describe a three-protein signal-transduction pathway that governs immunity to a protein toxin involved in cannibalism by the spore-forming bacterium Bacillus subtilis. Cells of B. subtilis enter the pathway to sporulate under conditions of nutrient limitation but delay becoming committed to spore formation by killing nonsporulating siblings and feeding on the dead cells. Killing is mediated by the exported toxic protein SdpC. We report that extracellular SdpC induces the synthesis of an immunity protein, SdpI, that protects toxin-producing cells from being killed. SdpI, a polytopic membrane protein, is encoded by a two-gene operon under sporulation control that contains the gene for an autorepressor, SdpR. The autorepressor binds to and blocks the promoter for the operon. Evidence indicates that SdpI is also a signal-transduction protein that responds to the SdpC toxin by sequestering the SdpR autorepressor at the membrane. Sequestration relieves repression and stimulates synthesis of immunity protein.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Wei-Ting Liu; Yu-Liang Yang; Yuquan Xu; Anne Lamsa; Nina M. Haste; Jane Y. Yang; Julio Ng; David J. Gonzalez; Craig D. Ellermeier; Paul D. Straight; Pavel A. Pevzner; Joe Pogliano; Victor Nizet; Kit Pogliano; Pieter C. Dorrestein
During bacterial cannibalism, a differentiated subpopulation harvests nutrients from their genetically identical siblings to allow continued growth in nutrient-limited conditions. Hypothesis-driven imaging mass spectrometry (IMS) was used to identify metabolites active in a Bacillus subtilis cannibalism system in which sporulating cells lyse nonsporulating siblings. Two candidate molecules with sequences matching the products of skfA and sdpC, genes for the proposed cannibalistic factors sporulation killing factor (SKF) and sporulation delaying protein (SDP), respectively, were identified and the structures of the final products elucidated. SKF is a cyclic 26-amino acid (aa) peptide that is posttranslationally modified with one disulfide and one cysteine thioether bridged to the α-position of a methionine, a posttranslational modification not previously described in biology. SDP is a 42-residue peptide with one disulfide bridge. In spot test assays on solid medium, overproduced SKF and SDP enact a cannibalistic killing effect with SDP having higher potency. However, only purified SDP affected B. subtilis cells in liquid media in fluorescence microscopy and growth assays. Specifically, SDP treatment delayed growth in a concentration-dependent manner, caused increases in cell permeability, and ultimately caused cell lysis accompanied by the production of membrane tubules and spheres. Similarly, SDP but not SKF was able to inhibit the growth of the pathogens Staphylococcus aureus and Staphylococcus epidermidis with comparable IC50 to vancomycin. This investigation, with the identification of SKF and SDP structures, highlights the strength of IMS in investigations of metabolic exchange of microbial colonies and also demonstrates IMS as a promising approach to discover novel biologically active molecules.
Journal of Bacteriology | 2000
Theresa L. Stanley; Craig D. Ellermeier; James M. Slauch
In vivo expression technology was used to identify Salmonella enterica serovar Typhimurium genes that are transcriptionally induced when the bacteria colonize the small intestines of mice. These genes were subsequently screened for those that are transcriptionally inactive during the systemic stages of disease. This procedure identified gipA, a gene that is specifically induced in the small intestine of the animal. The gipA gene is carried on the lambdoid phage Gifsy-1. Consistent with the expression profile, the sole defect conferred by a gipA null mutation is in growth or survival in a Peyers patch. The gipA strain is wild type in its ability to initially colonize the small intestine and invade the intestinal epithelium. The mutant also survives and propagates at wild-type levels during the systemic stages of disease. The gipA open reading frame is homologous to a family of putative insertion sequence elements, although our evidence shows that transposition is not required for gipA function in the Peyers patch. These results suggest that the bacteria sense and respond to the particular environment of the Peyers patch, a critical site for the replication of Salmonella serovar Typhimurium.
Journal of Bacteriology | 2005
Massimo Merighi; Craig D. Ellermeier; James M. Slauch; John S. Gunn
Salmonella enterica modulates resistance to antimicrobial peptides in part via covalent modifications of the lipopolysaccharide (LPS). The two-component systems PhoP/PhoQ and PmrA/PmrB are activated during infection and regulate several genes involved in LPS modifications by responding to signals such as pH, iron, magnesium, and antimicrobial peptides. A recombination-based in vivo expression technology approach was adopted to analyze the spatial-temporal patterns of in vivo expression of genes of the PhoP and PmrA regulons and to identify the in vivo signals modulating their transcription. In vitro, we showed PhoP- and/or PmrA-dependent induction of pmrH (LPS aminoarabinose modification operon) by acidic pH, low levels of magnesium, or high levels of Fe(III). Upregulation in cultured J774A.1 macrophages was shown for pmrH, pagP (LPS palmitate addition), and ssaB (pathogenicity island II secretion) but not for prgH (pathogenicity island I secretion). Increased levels of pmrH, phoP, and prgH transcription but not ssaB were observed in bacteria isolated from the lumen of the distal ileum. Bacteria isolated from spleens of orally inoculated mice showed no further induction of prgH but had the highest expression of pmrH, pagP, and ssaB. In vivo induction of pmrH was fully dependent on pmrA and phoP, and buffering stomach acidity, iron chelation, or low-iron diets did not affect the expression of pmrH in the intestinal lumen. The observation of pmrH and pagP expression in the intestine refutes the paradigm of PhoP/PhoQ and PmrA/PmrB in vivo expression as solely intracellularly induced and supports previous data demonstrating peroral virulence attenuation of pmrH mutants.
PLOS ONE | 2008
Jenee N. Smith; Jessica L. Dyszel; Jitesh A. Soares; Craig D. Ellermeier; Craig Altier; Sara D. Lawhon; L. Garry Adams; Vjollca Konjufca; Roy Curtiss; James M. Slauch; Brian M. M. Ahmer
Background LuxR-type transcription factors are typically used by bacteria to determine the population density of their own species by detecting N-acylhomoserine lactones (AHLs). However, while Escherichia and Salmonella encode a LuxR-type AHL receptor, SdiA, they cannot synthesize AHLs. In vitro, it is known that SdiA can detect AHLs produced by other bacterial species. Methodology/Principal Findings In this report, we tested the hypothesis that SdiA detects the AHL-production of other bacterial species within the animal host. SdiA did not detect AHLs during the transit of Salmonella through the gastrointestinal tract of a guinea pig, a rabbit, a cow, 5 mice, 6 pigs, or 12 chickens. However, SdiA was activated during the transit of Salmonella through turtles. All turtles examined were colonized by the AHL-producing species Aeromonas hydrophila. Conclusions/Significance We conclude that the normal gastrointestinal microbiota of most animal species do not produce AHLs of the correct type, in an appropriate location, or in sufficient quantities to activate SdiA. However, the results obtained with turtles represent the first demonstration of SdiA activity in animals.
Current Opinion in Microbiology | 2012
Theresa D. Ho; Craig D. Ellermeier
The bacterial cell envelope is essential for cell viability and is a target for numerous antibiotics and host immune defenses. Thus bacteria must sense and respond to damage to the cell envelope. Many bacteria utilize alternative σ factors such as extracytoplasmic function (ECF) σ factors to respond to cell envelope stress. Although ECF σ factors are utilized by both Gram negative and Gram positive bacteria to respond to cell envelope stress, the mechanisms of sensing differ. In this review, we examine the events and proteins that are required for activation of two model extracytoplasmic function σ factors, σ(E) in E. coli and σ(W) in B. subtilis.
Journal of Bacteriology | 2004
Craig D. Ellermeier; James M. Slauch
Salmonella serovars cause a wide variety of diseases ranging from mild gastroenteritis to life-threatening systemic infections. An important step in Salmonella enterica serovar Typhimurium infection is the invasion of nonphagocytic epithelial cells, mediated by a type III secretion system (TTSS) encoded on Salmonella pathogenicity island 1 (SPI1). The SPI1 TTSS forms a needle complex through which effector proteins are injected into the cytosol of host cells, where they promote actin rearrangement and engulfment of the bacteria. We previously identified the Salmonella-specific regulatory protein RtsA, which induces expression of hilA and, thus, the SPI1 genes. Here we show that the hilA regulators RtsA, HilD, and HilC can each induce transcription of dsbA, which encodes a periplasmic disulfide bond isomerase. RtsA induces expression of dsbA independent of either the SPI1 TTSS or the only known regulator of dsbA, the CpxRA two-component system. We show that DsbA is required for both the SPI1 and SPI2 TTSS to translocate effector proteins into the cytosol of host cells. DsbA is also required for survival during the systemic stages of infection. We also present evidence that production of SPI1 effector proteins is coupled to assembly of the TTSS. This feedback regulation is mediated at either the transcriptional or posttranscriptional level, depending on the particular effector. Loss of DsbA leads to feedback inhibition, which is consistent with the hypothesis that disulfide bond formation plays a role in TTSS assembly or function.