Craig D. Robinson
Marine Scotland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Craig D. Robinson.
Environmental Sciences Europe | 2015
Ann-Sofie Wernersson; Mario Carere; Chiara Maggi; Petr Tusil; Premysl Soldan; Alice James; Wilfried Sanchez; Valeria Dulio; Katja Broeg; Georg Reifferscheid; Sebastian Buchinger; Hannie Maas; Esther Van Der Grinten; Simon O’Toole; Antonella Ausili; Loredana Manfra; Laura Marziali; Stefano Polesello; Ines Lacchetti; Laura Mancini; Karl Lilja; Maria Linderoth; Tove Lundeberg; Bengt Fjällborg; Tobias Porsbring; D. G. Joakim Larsson; Johan Bengtsson-Palme; Lars Förlin; Cornelia Kienle; Petra Kunz
The Water Framework Directive (WFD), 2000/60/EC, requires an integrated approach to the monitoring and assessment of the quality of surface water bodies. The chemical status assessment is based on compliance with legally binding Environmental Quality Standards (EQSs) for selected chemical pollutants (priority substances) of EU-wide concern. In the context of the mandate for the period 2010 to 2012 of the subgroup Chemical Monitoring and Emerging Pollutants (CMEP) under the Common Implementation Strategy (CIS) for the WFD, a specific task was established for the elaboration of a technical report on aquatic effect-based monitoring tools. The activity was chaired by Sweden and co-chaired by Italy and progressively involved several Member States and stakeholders in an EU-wide drafting group. The main aim of this technical report was to identify potential effect-based tools (e.g. biomarkers and bioassays) that could be used in the context of the different monitoring programmes (surveillance, operational and investigative) linking chemical and ecological status assessment. The present paper summarizes the major technical contents and findings of the report.
Aquatic Toxicology | 2010
Michael J. Leaver; Amer M. Diab; Evridiki Boukouvala; Timothy Williams; James K. Chipman; Colin F. Moffat; Craig D. Robinson; Stephen G. George
The effects of chronic long-term exposure to multiply polluted environments on fish are not well understood, but environmental surveys suggest that such exposure may cause a variety of pathologies, including cancers. Transcriptomic profiling has recently been used to assess gene expression in European flounder (Platichthys flesus) living in several polluted and clean estuaries. However, the gene expression changes detected were not unequivocally elicited by pollution, most likely due to the confounding effects of natural estuarine ecosystem variables. In this study flounder from an uncontaminated estuary were held on clean or polluted sediments in mesocosms, allowing control of variables such as salinity, temperature, and diet. After 7 months flounder were removed from each mesocosm and hepatocytes prepared from fish exposed to clean or polluted sediments. The hepatocytes were treated with benzo(a)pyrene (BAP), estradiol (E2), copper, a mixture of these three, or with the vehicle DMSO. A flounder cDNA microarray was then used to measure hepatocyte transcript abundance after each treatment. The results show that long-term chronic exposure to a multiply polluted sediment causes increases in the expression of mRNAs coding for proteins of the endogenous apoptotic programme, of innate immunity and inflammation. Contrary to expectation, the expression of mRNAs which are commonly used as biomarkers of environmental exposure to particular contaminants were not changed, or were changed contrary to expectation. However, acute treatment of hepatocytes from flounder from both clean and polluted sediments with BAP or E2 caused the expected changes in the expression of these biomarkers. Thus transcriptomic analysis of flounder exposed long-term to chronic pollution causes a different pattern of gene expression than in fish acutely treated with single chemicals, and reveals novel potential biomarkers of environmental contaminant exposure. These novel biomarkers include Diablo, a gene involved in apoptotic pathways and highly differentially regulated by both chronic and acute exposure to multiple pollutants.
Environmental Science & Technology | 2016
Kees Booij; Craig D. Robinson; Robert M. Burgess; Philipp Mayer; Cindy A. Roberts; Lutz Ahrens; Ian Allan; Jan Brant; Lisa Jones; Uta R. Kraus; Martin M. Larsen; Peter Lepom; Joerdis Petersen; Daniel Profrock; Patrick Roose; Sabine Schäfer; Foppe Smedes; Céline Tixier; Katrin Vorkamp; Paul Whitehouse
We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EUs quality standard definition in terms of total concentrations in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined.
Marine Environmental Research | 2017
A. Dick Vethaak; Ian M. Davies; John E. Thain; Matthew Gubbins; Concepción Martínez-Gómez; Craig D. Robinson; Colin F. Moffat; Thierry Burgeot; Thomas Maes; Werner Wosniok; Michelle Giltrap; Thomas Lang; Ketil Hylland
Many maritime countries in Europe have implemented marine environmental monitoring programmes which include the measurement of chemical contaminants and related biological effects. How best to integrate data obtained in these two types of monitoring into meaningful assessments has been the subject of recent efforts by the International Council for Exploration of the Sea (ICES) Expert Groups. Work within these groups has concentrated on defining a core set of chemical and biological endpoints that can be used across maritime areas, defining confounding factors, supporting parameters and protocols for measurement. The framework comprised markers for concentrations of, exposure to and effects from, contaminants. Most importantly, assessment criteria for biological effect measurements have been set and the framework suggests how these measurements can be used in an integrated manner alongside contaminant measurements in biota, sediments and potentially water. Output from this process resulted in OSPAR Commission (www.ospar.org) guidelines that were adopted in 2012 on a trial basis for a period of 3 years. The developed assessment framework can furthermore provide a suitable approach for the assessment of Good Environmental Status (GES) for Descriptor 8 of the European Union (EU) Marine Strategy Framework Directive (MSFD).
Marine Environmental Research | 2017
Ketil Hylland; Thierry Burgeot; Concepción Martínez-Gómez; Thomas Lang; Craig D. Robinson; Jörundur Svavarsson; John E. Thain; A.D. Vethaak; Gubbins Mj
An international workshop on marine integrated contaminant monitoring (ICON) was organised to test a framework on integrated environmental assessment and simultaneously assess the status of selected European marine areas. Biota and sediment were sampled in selected estuarine, inshore and offshore locations encompassing marine habitats from Iceland to the Spanish Mediterranean. The outcome of the ICON project is reported in this special issue as method-oriented papers addressing chemical analyses, PAH metabolites, oxidative stress, biotransformation, lysosomal membrane stability, genotoxicity, disease in fish, and sediment assessment, as well as papers assessing specific areas. This paper provides a background and introduction to the ICON project, by reviewing how effects of contaminants on marine organisms can be monitored and by describing strategies that have been employed to monitor and assess such effects. Through the ICON project we have demonstrated the use of an integrating framework and gleaned more knowledge than ever before in any single field campaign about the impacts contaminants may have in European marine areas.
Chemosphere | 2013
Emmanuel S. Emelogu; Pat Pollard; Craig D. Robinson; Foppe Smedes; Lynda Webster; Ian W. Oliver; Craig McKenzie; T. B. Seiler; Henner Hollert; Colin F. Moffat
We investigated the feasibility of coupling passive sampling and in vitro bioassay techniques for both chemical and ecotoxicological assessment of complex mixtures of organic contaminants in water. Silicone rubber passive sampling devices (SR-PSDs) were deployed for 8-9 weeks in four streams and an estuary of an agricultural catchment in North East (NE) Scotland. Extracts from the SR-PSDs were analysed for freely dissolved hydrophobic organic contaminants (HOCs) and screened for wide range of pesticides. The total concentrations of dissolved PAHs (∑PAH(40), parent and branched) in the water column of the catchment varied from 38 to 69 ng L(-1), whilst PCBs (∑PCB(32)) ranged 0.02-0.06 ng L(-1). A number and level of pesticides and acid/urea herbicides of varying hydrophobicity (logK(OW)s ~2.25 to ~5.31) were also detected in the SR extracts, indicating their occurrence in the catchment. The acute toxicity and EROD induction potentials of SR extracts from the study sites were evaluated with rainbow trout liver (Oncorhynchus mykiss; RTL-W1) cell line. Acute cytotoxicity was not observed in cells following 48 h exposure to the SR extracts using neutral red uptake assay as endpoint. But, on a sublethal level, for every site, statistically significant EROD activity was observed to some degree following 72 h exposure to extracts, indicating the presence of compounds with dioxin-like effect that are bioavailable to aquatic organisms in the water bodies of the catchment. Importantly, only a small fraction of the EROD induction could be attributed to the PAHs and PCBs that were determined. This preliminary study demonstrates that the coupling of silicone rubber passive sampling techniques with in vitro bioassays is feasible and offers a cost effective early warning signal on water quality deterioration.
Chemosphere | 2014
Timothy Williams; Ian M. Davies; Huifeng Wu; Amer M. Diab; Lynda Webster; Mark R. Viant; J. Kevin Chipman; Michael J. Leaver; Stephen G. George; Colin F. Moffat; Craig D. Robinson
Molecular responses to acute toxicant exposure can be effective biomarkers, however responses to chronic exposure are less well characterised. The aim of this study was to determine chronic molecular responses to environmental mixtures in a controlled laboratory setting, free from the additional variability encountered with environmental sampling of wild organisms. Flounder fish were exposed in mesocosms for seven months to a contaminated estuarine sediment made by mixing material from the Forth (high organics) and Tyne (high metals and tributyltin) estuaries (FT) or a reference sediment from the Ythan estuary (Y). Chemical analyses demonstrated that FT sediment contained significantly higher concentrations of key environmental pollutants (including polycyclic aromatic hydrocarbons (PAHs), chlorinated biphenyls and heavy metals) than Y sediment, but that chronically exposed flounder showed a lack of differential accumulation of contaminants, including heavy metals. Biliary 1-hydroxypyrene concentration and erythrocyte DNA damage increased in FT-exposed fish. Transcriptomic and (1)H NMR metabolomic analyses of liver tissues detected small but statistically significant alterations between fish exposed to different sediments. These highlighted perturbance of immune response and apoptotic pathways, but there was a lack of response from traditional biomarker genes. Gene-chemical association annotation enrichment analyses suggested that polycyclic aromatic hydrocarbons were a major class of toxicants affecting the molecular responses of the exposed fish. This demonstrated that molecular responses of sentinel organisms can be detected after chronic mixed toxicant exposure and that these can be informative of key components of the mixture.
Marine Environmental Research | 2017
Concepción Martínez-Gómez; Craig D. Robinson; Thierry Burgeot; Matthew Gubbins; Halldór Pálmar Halldórsson; M. Albentosa; John P. Bignell; Ketil Hylland; A.D. Vethaak
This study investigated whether general stress biomarkers in mussels can be applied as common first-tier biomarkers in regional biomonitoring programmes in the North Sea (including Iceland) and western Mediterranean Sea. Stress on Stress (SoS) and lysosomal membrane stability (LMS) biomarkers were analysed in resident mussels (Mytilus sp.) from 8 coastal sites and in transplanted mussels (Mytilus galloprovincialis) from two Spanish Mediterranean coastal sites. The assessment of results, as input to pollution monitoring strategies, was performed jointly for LMS and SoS data from the two regions. Contaminant body burden of the mussels was compared with biomarker results. The results demonstrated that these two general and non-expensive stress biomarkers in mussel can be applied throughout European waters, providing a cost-effective and harmonised approach to screen contaminant-related biological effects within the framework of wide-scale pollution biomonitoring programmes, such as that proposed by the European Union, i.e. the Marine Strategy Framework Directive.
Marine Environmental Research | 2017
Ketil Hylland; Craig D. Robinson; Thierry Burgeot; Concepción Martínez-Gómez; Thomas Lang; Jörundur Svavarsson; John E. Thain; A. Dick Vethaak; Mattew J. Gubbins
This paper reports a full assessment of results from ICON, an international workshop on marine integrated contaminant monitoring, encompassing different matrices (sediment, fish, mussels, gastropods), areas (Iceland, North Sea, Baltic, Wadden Sea, Seine estuary and the western Mediterranean) and endpoints (chemical analyses, biological effects). ICON has demonstrated the use of a framework for integrated contaminant assessment on European coastal and offshore areas. The assessment showed that chemical contamination did not always correspond with biological effects, indicating that both are required. The framework can be used to develop assessments for EU directives. If a 95% target were to be used as a regional indicator of MSFD GES, Iceland and offshore North Sea would achieve the target using the ICON dataset, but inshore North Sea, Baltic and Spanish Mediterranean regions would fail.
Marine Environmental Research | 2017
Thierry Burgeot; Farida Akcha; Dominique Ménard; Craig D. Robinson; Véronique Loizeau; Christophe Brach-Papa; Concepción Martínez-Gómez; Jérémie le Goff; Hélène Budzinski; Karine Le Menach; Jérôme Cachot; Christophe Minier; Katja Broeg; Ketil Hylland
The International workshop on Integrated Assessment of CONtaminants impacts on the North sea (ICON) provided a framework to validate the application of chemical and biological assessment thresholds (BACs and EACs) in the Seine Bay in France. Bioassays (oyster larval anomalies, Corophium arenarium toxicity assay and DR Calux) for sediment and biomarkers: ethoxyresorufin-O-deethylase (EROD) activity, acetylcholinesterase (AChE) activity, lysosomal membrane stability (LMS), DNA strand breaks using the Comet assay, DNA adducts, micronucleus (MN), PAH metabolites, imposex, intersex and fish external pathologies were analysed in four marine sentinel species (Platichthys flesus, Limanda limanda, Mytilus sp. and Nucella lapilus). Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals were analysed in biota and sediment. Results for sediment and four species in 2008-2009 made it possible to quantify the impact of contaminants using thresholds (Environmental Assessment Criteria/EAC2008: 70% and EAC2009: 60%) and effects (EAC2008: 50% and EAC2009: 40%) in the Seine estuary. The Seine estuary is ranked among Europes most highly polluted sites.