Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig Donner is active.

Publication


Featured researches published by Craig Donner.


international conference on computer graphics and interactive techniques | 2006

Analysis of human faces using a measurement-based skin reflectance model

Tim Weyrich; Wojciech Matusik; Hanspeter Pfister; Bernd Bickel; Craig Donner; Chien Tu; Janet McAndless; Jinho Lee; Addy Ngan; Henrik Wann Jensen; Markus H. Gross

We have measured 3D face geometry, skin reflectance, and subsurface scattering using custom-built devices for 149 subjects of varying age, gender, and race. We developed a novel skin reflectance model whose parameters can be estimated from measurements. The model decomposes the large amount of measured skin data into a spatially-varying analytic BRDF, a diffuse albedo map, and diffuse subsurface scattering. Our model is intuitive, physically plausible, and -- since we do not use the original measured data -- easy to edit as well. High-quality renderings come close to reproducing real photographs. The analysis of the model parameters for our sample population reveals variations according to subject age, gender, skin type, and external factors (e.g., sweat, cold, or makeup). Using our statistics, a user can edit the overall appearance of a face (e.g., changing skin type and age) or change small-scale features using texture synthesis (e.g., adding moles and freckles). We are making the collected statistics publicly available to the research community for applications in face synthesis and analysis.


international conference on computer graphics and interactive techniques | 2005

Light diffusion in multi-layered translucent materials

Craig Donner; Henrik Wann Jensen

This paper introduces a shading model for light diffusion in multi-layered translucent materials. Previous work on diffusion in translucent materials has assumed smooth semi-infinite homogeneous materials and solved for the scattering of light using a dipole diffusion approximation. This approximation breaks down in the case of thin translucent slabs and multi-layered materials. We present a new efficient technique based on multiple dipoles to account for diffusion in thin slabs. We enhance this multipole theory to account for mismatching indices of refraction at the top and bottom of of translucent slabs, and to model the effects of rough surfaces. To model multiple layers, we extend this single slab theory by convolving the diffusion profiles of the individual slabs. We account for multiple scattering between slabs by using a variant of Kubelka-Munk theory in frequency space. Our results demonstrate diffusion of light in thin slabs and multi-layered materials such as paint, paper, and human skin.


international conference on computer graphics and interactive techniques | 2008

A layered, heterogeneous reflectance model for acquiring and rendering human skin

Craig Donner; Tim Weyrich; Eugene d'Eon; Ravi Ramamoorthi; Szymon Rusinkiewicz

We introduce a layered, heterogeneous spectral reflectance model for human skin. The model captures the inter-scattering of light among layers, each of which may have an independent set of spatially-varying absorption and scattering parameters. For greater physical accuracy and control, we introduce an infinitesimally thin absorbing layer between scattering layers. To obtain parameters for our model, we use a novel acquisition method that begins with multi-spectral photographs. By using an inverse rendering technique, along with known chromophore spectra, we optimize for the best set of parameters for each pixel of a patch. Our method finds close matches to a wide variety of inputs with low residual error. We apply our model to faithfully reproduce the complex variations in skin pigmentation. This is in contrast to most previous work, which assumes that skin is homogeneous or composed of homogeneous layers. We demonstrate the accuracy and flexibility of our model by creating complex skin visual effects such as veins, tattoos, rashes, and freckles, which would be difficult to author using only albedo textures at the skins outer surface. Also, by varying the parameters to our model, we simulate effects from external forces, such as visible changes in blood flow within the skin due to external pressure.


international conference on computer graphics and interactive techniques | 2006

Acquiring scattering properties of participating media by dilution

Srinivasa G. Narasimhan; Mohit Gupta; Craig Donner; Ravi Ramamoorthi; Shree K. Nayar; Henrik Wann Jensen

The visual world around us displays a rich set of volumetric effects due to participating media. The appearance of these media is governed by several physical properties such as particle densities, shapes and sizes, which must be input (directly or indirectly) to a rendering algorithm to generate realistic images. While there has been significant progress in developing rendering techniques (for instance, volumetric Monte Carlo methods and analytic approximations), there are very few methods that measure or estimate these properties for media that are of relevance to computer graphics. In this paper, we present a simple device and technique for robustly estimating the properties of a broad class of participating media that can be either (a) diluted in water such as juices, beverages, paints and cleaning supplies, or (b) dissolved in water such as powders and sugar/salt crystals, or (c) suspended in water such as impurities. The key idea is to dilute the concentrations of the media so that single scattering effects dominate and multiple scattering becomes negligible, leading to a simple and robust estimation algorithm. Furthermore, unlike previous approaches that require complicated or separate measurement setups for different types or properties of media, our method and setup can be used to measure media with a complete range of absorption and scattering properties from a single HDR photograph. Once the parameters of the diluted medium are estimated, a volumetric Monte Carlo technique may be used to create renderings of any medium concentration and with multiple scattering. We have measured the scattering parameters of forty commonly found materials, that can be immediately used by the computer graphics community. We can also create realistic images of combinations or mixtures of the original measured materials, thus giving the user a wide flexibility in making realistic images of participating media.


eurographics symposium on rendering techniques | 2006

A spectral BSSRDF for shading human skin

Craig Donner; Henrik Wann Jensen

We present a novel spectral shading model for human skin. Our model accounts for both subsurface and surface scattering, and uses only four parameters to simulate the interaction of light with human skin. The four parameters control the amount of oil, melanin and hemoglobin in the skin, which makes it possible to match specific skin types. Using these parameters we generate custom wavelength dependent diffusion profiles for a two-layer skin model that account for subsurface scattering within the skin. These diffusion profiles are computed using convolved diffusion multipoles, enabling an accurate and rapid simulation of the subsurface scattering of light within skin. We combine the subsurface scattering simulation with a Torrance-Sparrow BRDF model to simulate the interaction of light with an oily layer at the surface of the skin. Our results demonstrate that this four parameter model makes it possible to simulate the range of natural appearance of human skin including African, Asian, and Caucasian skin types.


international conference on computer graphics and interactive techniques | 2009

An empirical BSSRDF model

Craig Donner; Jason Lawrence; Ravi Ramamoorthi; Toshiya Hachisuka; Henrik Wann Jensen; Shree K. Nayar

We present a new model of the homogeneous BSSRDF based on large-scale simulations. Our model captures the appearance of materials that are not accurately represented using existing single scattering models or multiple isotropic scattering models (e.g. the diffusion approximation). We use an analytic function to model the 2D hemispherical distribution of exitant light at a point on the surface, and a table of parameter values of this function computed at uniformly sampled locations over the remaining dimensions of the BSSRDF domain. This analytic function is expressed in elliptic coordinates and has six parameters which vary smoothly with surface position, incident angle, and the underlying optical properties of the material (albedo, mean free path length, phase function and the relative index of refraction). Our model agrees well with measured data, and is compact, requiring only 250MB to represent the full spatial- and angular-distribution of light across a wide spectrum of materials. In practice, rendering a single material requires only about 100KB to represent the BSSRDF.


international conference on computer graphics and interactive techniques | 2007

Radiance caching for participating media

Wojciech Jarosz; Craig Donner; Matthias Zwicker; Henrik Wann Jensen

In this article we present a novel radiance caching method for efficiently rendering participating media using Monte Carlo ray tracing. Our method handles all types of light scattering including anisotropic scattering, and it works in both homogeneous and heterogeneous media. A key contribution in the article is a technique for computing gradients of radiance evaluated in participating media. These gradients take the full path of the scattered light into account including the changing properties of the medium in the case of heterogeneous media. The gradients can be computed simultaneously with the inscattered radiance with negligible overhead. We compute gradients for single scattering from lights and surfaces and for multiple scattering, and we use a spherical harmonics representation in media with anisotropic scattering. Our second contribution is a new radiance caching scheme for participating media. This caching scheme uses the information in the radiance gradients to sparsely sample as well as interpolate radiance within the medium utilizing a novel, perceptually based error metric. Our method provides several orders of magnitude speedup compared to path tracing and produces higher quality results than volumetric photon mapping. Furthermore, it is view-driven and well suited for large scenes where methods such as photon mapping become costly.


Optics Letters | 2006

Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination

Neel Joshi; Craig Donner; Henrik Wann Jensen

Many existing methods for the recovery of optical parameters from turbid materials rely on the diffusion approximation, which does not permit the recovery of the degree of anisotropy in the scattering phase function. These methods also make the explicit assumption that light is normally incident at the top surface of the material. We demonstrate a steady-state imaging technique that uses nonnormally incident light to determine anisotropy parameter g by fitting Monte Carlo simulation results to high dynamic range images of the intensity profiles of samples. The proposed method is simpler than existing methods and does not rely on thin samples to produce reasonable results.


international conference on computer graphics and interactive techniques | 2010

A practical appearance model for dynamic facial color

Jorge Jimenez; Timothy Scully; Nuno Barbosa; Craig Donner; Xenxo Alvarez; Teresa Vieira; Paul J. Matts; Verónica Orvalho; Diego Gutierrez; Tim Weyrich

Facial appearance depends on both the physical and physiological state of the skin. As people move, talk, undergo stress, and change expression, skin appearance is in constant flux. One of the key indicators of these changes is the color of skin. Skin color is determined by scattering and absorption of light within the skin layers, caused mostly by concentrations of two chromophores, melanin and hemoglobin. In this paper we present a real-time dynamic appearance model of skin built from in vivo measurements of melanin and hemoglobin concentrations. We demonstrate an efficient implementation of our method, and show that it adds negligible overhead to existing animation and rendering pipelines. Additionally, we develop a realistic, intuitive, and automatic control for skin color, which we term a skin appearance rig. This rig can easily be coupled with a traditional geometric facial animation rig. We demonstrate our method by augmenting digital facial performance with realistic appearance changes.


eurographics symposium on rendering techniques | 2007

Rendering translucent materials using photon diffusion

Craig Donner; Henrik Wann Jensen

We present a new algorithm for rendering translucent materials that combines photon tracing with diffusion. This combination makes it possible to efficiently render highly scattering translucent materials while accounting for internal blockers, complex geometry, translucent inter-scattering, and transmission and refraction of light at the boundary causing internal caustics. These effects cannot be accounted for with previous rendering approaches using the dipole or multipole diffusion approximations that only sample the incident illumination at the surface of the material. Instead of sampling lighting at the surface we trace photons into the material and store them volumetrically at their first scattering interaction with the material. We hierarchically integrate the diffusion of light from the photons to compute the radiant emittance at points on the surface of the material. For increased accuracy we use the incidence plane of the photon and the viewpoint on the surface to blend between three analytic diffusion approximations that best describe the geometric configuration between the photon and the shading point. For this purpose we introduce a new quadpole diffusion approximation that models diffusion at right angled edges, and an attenuation kernel to more accurately model multiple scattering near a light source. The photon diffusion approach is as efficient as previous Monte Carlo sampling approaches based on the dipole or multipole diffusion approximations, and our results demonstrate that it is more accurate and capable of capturing several illumination effects previously ignored when simulating the diffusion of light in translucent materials.

Collaboration


Dive into the Craig Donner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Weyrich

University College London

View shared research outputs
Top Co-Authors

Avatar

Addy Ngan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinho Lee

Mitsubishi Electric Research Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wojciech Matusik

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bernd Bickel

Institute of Science and Technology Austria

View shared research outputs
Researchain Logo
Decentralizing Knowledge