Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig J. Ceol is active.

Publication


Featured researches published by Craig J. Ceol.


Cell Stem Cell | 2008

Transparent adult zebrafish as a tool for in vivo transplantation analysis.

Richard M. White; Anna Sessa; Christopher J. Burke; Teresa V. Bowman; Jocelyn LeBlanc; Craig J. Ceol; Caitlin Bourque; Michael Dovey; Wolfram Goessling; Caroline E. Burns; Leonard I. Zon

The zebrafish is a useful model for understanding normal and cancer stem cells, but analysis has been limited to embryogenesis due to the opacity of the adult fish. To address this, we have created a transparent adult zebrafish in which we transplanted either hematopoietic stem/progenitor cells or tumor cells. In a hematopoiesis radiation recovery assay, transplantation of GFP-labeled marrow cells allowed for striking in vivo visual assessment of engraftment from 2 hr-5 weeks posttransplant. Using FACS analysis, both transparent and wild-type fish had equal engraftment, but this could only be visualized in the transparent recipient. In a tumor engraftment model, transplantation of RAS-melanoma cells allowed for visualization of tumor engraftment, proliferation, and distant metastases in as little as 5 days, which is not seen in wild-type recipients until 3 to 4 weeks. This transparent adult zebrafish serves as the ideal combination of both sensitivity and resolution for in vivo stem cell analyses.


Cell | 2009

Hematopoietic Stem Cell Development Is Dependent on Blood Flow

Trista E. North; Wolfram Goessling; Marian Peeters; Pulin Li; Craig J. Ceol; Allegra M. Lord; Gerhard J. Weber; James M. Harris; Claire C. Cutting; Paul L. Huang; Elaine Dzierzak; Leonard I. Zon

During vertebrate embryogenesis, hematopoietic stem cells (HSCs) arise in the aorta-gonads-mesonephros (AGM) region. We report here that blood flow is a conserved regulator of HSC formation. In zebrafish, chemical blood flow modulators regulated HSC development, and silent heart (sih) embryos, lacking a heartbeat and blood circulation, exhibited severely reduced HSCs. Flow-modifying compounds primarily affected HSC induction after the onset of heartbeat; however, nitric oxide (NO) donors regulated HSC number even when treatment occurred before the initiation of circulation, and rescued HSCs in sih mutants. Morpholino knockdown of nos1 (nnos/enos) blocked HSC development, and its requirement was shown to be cell autonomous. In the mouse, Nos3 (eNos) was expressed in HSCs in the AGM. Intrauterine Nos inhibition or embryonic Nos3 deficiency resulted in a reduction of hematopoietic clusters and transplantable murine HSCs. This work links blood flow to AGM hematopoiesis and identifies NO as a conserved downstream regulator of HSC development.


Nature | 2011

The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset

Craig J. Ceol; Yariv Houvras; Judit Jané-Valbuena; Steve Bilodeau; David A. Orlando; Valentine Battisti; Lauriane Fritsch; William M. Lin; Travis J. Hollmann; Fabrizio Ferré; Caitlin Bourque; Christopher J. Burke; Laura Turner; Audrey Uong; Laura A. Johnson; Rameen Beroukhim; Craig H. Mermel; Massimo Loda; Slimane Ait-Si-Ali; Levi A. Garraway; Richard A. Young; Leonard I. Zon

The most common mutation in melanoma, BRAF(V600E), activates the BRAF serine/threonine kinase and causes excessive MAPK pathway activity1,2. BRAF(V600E)mutations are also present in benign melanocytic nevi3, highlighting the importance of additional genetic alterations in the genesis of malignant tumors. Such changes include recurrent copy number variations that result in the amplification of oncogenes4,5. For certain amplifications, the large number of genes in the interval has precluded an understanding of cooperating oncogenic events. Here, we have used a zebrafish melanoma model to test genes in a recurrently amplified region on chromosome 1 for the ability to cooperate with BRAF(V600E) and accelerate melanoma. SETDB1, an enzyme that methylates histone H3 on lysine 9 (H3K9), was found to significantly accelerate melanoma formation in the zebrafish. Chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-Seq) and gene expression analyses revealed target genes, including Hox genes, that are transcriptionally dysregulated in response to elevated SETDB1. Our studies establish SETDB1 as an oncogene in melanoma and underscore the role of chromatin factors in regulating tumorigenesis.


Molecular Cell | 2001

dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development.

Craig J. Ceol; H. Robert Horvitz

The synthetic multivulva (synMuv) genes define two functionally redundant pathways that antagonize RTK/Ras signaling during Caenorhabditis elegans vulval induction. The synMuv gene lin-35 encodes a protein similar to the mammalian tumor suppressor pRB and has been proposed to act as a transcriptional repressor. Studies using mammalian cells have shown that pRB can prevent cell cycle progression by inhibiting DP/E2F-mediated transcriptional activation. We identified C. elegans genes that encode proteins similar to DP or E2F. Loss-of-function mutations in two of these genes, dpl-1 DP and efl-1 E2F, caused the same vulval abnormalities as do lin-35 Rb loss-of-function mutations. We propose that rather than being inhibited by lin-35 Rb, dpl-1 DP and efl-1 E2F act with lin-35 Rb in transcriptional repression to antagonize RTK/Ras signaling during vulval development.


Developmental Biology | 2008

APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development.

Wolfram Goessling; Trista E. North; Allegra M. Lord; Craig J. Ceol; Sang Lee; Gilbert Weidinger; Caitlin Bourque; Robbert Strijbosch; Anna Pavlina G Haramis; Mark Puder; Hans Clevers; Randall T. Moon; Leonard I. Zon

Developmental signaling pathways hold the keys to unlocking the promise of adult tissue regeneration, and to inhibiting carcinogenesis. Patients with mutations in the Adenomatous Polyposis Coli (APC) gene are at increased risk of developing hepatoblastoma, an embryonal form of liver cancer, suggesting that Wnt affects hepatic progenitor cells. To elucidate the role of APC loss and enhanced Wnt activity in liver development, we examined APC mutant and wnt inducible transgenic zebrafish. APC(+/-) embryos developed enlarged livers through biased induction of hepatic gene programs and increased proliferation. Conversely, APC(-/-) embryos formed no livers. Blastula transplantations determined that the effects of APC loss were cell autonomous. Induction of wnt modulators confirmed biphasic consequences of wnt activation: endodermal pattern formation and gene expression required suppression of wnt signaling in early somitogenesis; later, increased wnt activity altered endodermal fate by enhancing liver growth at the expense of pancreas formation; these effects persisted into the larval stage. In adult APC(+/-) zebrafish, increased wnt activity significantly accelerated liver regeneration after partial hepatectomy. Similarly, liver regeneration was significantly enhanced in APC(Min/+) mice, indicating the conserved effect of Wnt pathway activation in liver regeneration across vertebrate species. These studies reveal an important and time-dependent role for wnt signaling during liver development and regeneration.


Developmental Cell | 2004

A New Class of C. elegans synMuv Genes Implicates a Tip60/NuA4-like HAT Complex as a Negative Regulator of Ras Signaling

Craig J. Ceol; H.R Horvitz

The class A and class B synMuv genes are functionally redundant negative regulators of a Ras signaling pathway that induces C. elegans vulval development. A number of class B synMuv genes encode components of an Rb and histone deacetylase complex that likely acts to repress transcription of genes required for vulval induction. We discovered a new class of synMuv genes that acts redundantly with both the A and B classes of genes in vulval cell-fate determination. These new class C synMuv genes encode TRRAP, MYST family histone acetyltransferase, and Enhancer of Polycomb homologs, which form a putative C. elegans Tip60/NuA4-like histone acetyltransferase complex. A fourth gene with partial class C synMuv properties encodes a homolog of the mammalian SWI/SNF family ATPase p400. Our findings indicate that the coordinated action of two chromatin-modifying complexes, one with histone deacetylase and the other with histone acetyltransferase activity, is important in regulating Ras signaling and specifying cell fates during C. elegans development.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex

Melissa M. Harrison; Craig J. Ceol; Xiaowei Lu; H. Robert Horvitz

The Caenorhabditis elegans synthetic multivulva (synMuv) genes act redundantly to antagonize the specification of vulval cell fates, which are promoted by an RTK/Ras pathway. At least 26 synMuv genes have been genetically identified, several of which encode proteins with homologs that act in chromatin remodeling or transcriptional repression. Here we report the molecular characterization of two synMuv genes, lin-37 and lin-54. We show that lin-37 and lin-54 encode proteins in a complex with at least seven synMuv proteins, including LIN-35, the only C. elegans homolog of the mammalian tumor suppressor Rb. Biochemical analyses of mutants suggest that LIN-9, LIN-53, and LIN-54 are required for the stable formation of this complex. This complex is distinct from a second complex of synMuv proteins with a composition similar to that of the mammalian Nucleosome Remodeling and Deacetylase complex. The class B synMuv complex we identified is evolutionarily conserved and likely functions in transcriptional repression and developmental regulation.


Oncogene | 2008

Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish

David M. Langenau; Matthew D. Keefe; Narie Y. Storer; Cicely A. Jette; Alexandra C. H. Smith; Craig J. Ceol; Caitlin Bourque; A T Look; Leonard I. Zon

The zebrafish has emerged as a powerful genetic model of cancer, but has been limited by the use of stable transgenic approaches to induce disease. Here, a co-injection strategy is described that capitalizes on both the numbers of embryos that can be microinjected and the ability of transgenes to segregate together and exert synergistic effects in forming tumors. Using this mosaic transgenic approach, gene pathways involved in tumor initiation and radiation sensitivity have been identified.


Zebrafish | 2008

Melanoma Biology and the Promise of Zebrafish

Craig J. Ceol; Yariv Houvras; Richard M. White; Leonard I. Zon

Advantageous organismal and technical attributes of the zebrafish are being increasingly applied to study cancer biology. Along with other tumor models, zebrafish that develop melanomas have been generated. In both genetics and phenotype, zebrafish melanomas are strikingly similar to their human counterparts. For this reason, studies in the zebrafish are poised to make significant contributions to melanoma biology. In this review, we summarize important features of human melanoma and discuss how the zebrafish can be used to address many questions that remain unanswered about this devastating disease.


Genetics | 2006

Identification and Classification of Genes That Act Antagonistically to let-60 Ras Signaling in Caenorhabditis elegans Vulval Development

Craig J. Ceol; Frank Stegmeier; Melissa M. Harrison; H. Robert Horvitz

The synthetic multivulva (synMuv) genes negatively regulate Ras-mediated vulval induction in the nematode Caenorhabditis elegans. The synMuv genes define three classes, A, B, and C, such that double mutants carrying mutations in genes of any two classes are multivulva. The class B synMuv genes include lin-35, a homolog of the retinoblastoma (Rb) tumor suppressor gene, as well as homologs of genes that function with Rb in transcriptional regulation. We screened for additional synMuv mutations using a strategy different from that of previous synMuv genetic screens. Some of the mutations we recovered affect new synMuv genes. We present criteria for assigning synMuv mutations into different genetic classes. We also describe the molecular characterization of the class B synMuv gene lin-65.

Collaboration


Dive into the Craig J. Ceol's collaboration.

Top Co-Authors

Avatar

Leonard I. Zon

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Robert Horvitz

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa Kasheta

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Burke

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Corrie Painter

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Karen Dresser

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge