Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig J. Dobry is active.

Publication


Featured researches published by Craig J. Dobry.


Molecular Biology of the Cell | 2008

Analysis of the Yeast Kinome Reveals a Network of Regulated Protein Localization during Filamentous Growth

Nikë Bharucha; Jun Ma; Craig J. Dobry; Sarah K. Lawson; Zhifen Yang; Anuj Kumar

The subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling modules, wherein yeast cells form interconnected and elongated chains. Because standard strains of yeast are nonfilamentous, we constructed a unique set of 125 kinase-yellow fluorescent protein chimeras in the filamentous Sigma1278b strain for this study. In total, we identified six cytoplasmic kinases (Bcy1p, Fus3p, Ksp1p, Kss1p, Sks1p, and Tpk2p) that localize predominantly to the nucleus during filamentous growth. These kinases form part of an interdependent, localization-based regulatory network: deletion of each individual kinase, or loss of kinase activity, disrupts the nuclear translocation of at least two other kinases. In particular, this study highlights a previously unknown function for the kinase Ksp1p, indicating the essentiality of its nuclear translocation during yeast filamentous growth. Thus, the localization of Ksp1p and the other kinases identified here is tightly controlled during filamentous growth, representing an overlooked regulatory component of this stress response.


PLOS Genetics | 2011

A Large-Scale Complex Haploinsufficiency-Based Genetic Interaction Screen in Candida albicans: Analysis of the RAM Network during Morphogenesis

Nikë Bharucha; Yeissa Chabrier-Roselló; Tao Xu; Cole Johnson; Sarah Sobczynski; Qingxuan Song; Craig J. Dobry; Matthew J. Eckwahl; Christopher P. Anderson; Andrew J. Benjamin; Anuj Kumar; Damian J. Krysan

The morphogenetic transition between yeast and filamentous forms of the human fungal pathogen Candida albicans is regulated by a variety of signaling pathways. How these pathways interact to orchestrate morphogenesis, however, has not been as well characterized. To address this question and to identify genes that interact with the Regulation of Ace2 and Morphogenesis (RAM) pathway during filamentation, we report the first large-scale genetic interaction screen in C. albicans. Our strategy for this screen was based on the concept of complex haploinsufficiency (CHI). A heterozygous mutant of CBK1 (cbk1Δ/CBK1), a key RAM pathway protein kinase, was subjected to transposon-mediated, insertional mutagenesis. The resulting double heterozygous mutants (6,528 independent strains) were screened for decreased filamentation on Spider Medium (SM). From the 441 mutants showing altered filamentation, 139 transposon insertion sites were sequenced, yielding 41 unique CBK1-interacting genes. This gene set was enriched in transcriptional targets of Ace2 and, strikingly, the cAMP-dependent protein kinase A (PKA) pathway, suggesting an interaction between these two pathways. Further analysis indicates that the RAM and PKA pathways co-regulate a common set of genes during morphogenesis and that hyper-activation of the PKA pathway may compensate for loss of RAM pathway function. Our data also indicate that the PKA–regulated transcription factor Efg1 primarily localizes to yeast phase cells while the RAM–pathway regulated transcription factor Ace2 localizes to daughter nuclei of filamentous cells, suggesting that Efg1 and Ace2 regulate a common set of genes at separate stages of morphogenesis. Taken together, our observations indicate that CHI–based screening is a useful approach to genetic interaction analysis in C. albicans and support a model in which these two pathways regulate a common set of genes at different stages of filamentation.


Genetics | 2007

An interrelationship between autophagy and filamentous growth in budding yeast

Jun Ma; Rui Jin; Xiaoyu Jia; Craig J. Dobry; Li Wang; Fulvio Reggiori; Ji Zhu; Anuj Kumar

Over the last 15 years, yeast pseudohyphal growth (PHG) has been the focus of intense research interest as a model of fungal pathogenicity. Specifically, PHG is a stress response wherein yeast cells deprived of nitrogen form filaments of elongated cells. Nitrogen limitation also induces autophagy, a ubiquitous eukaryotic stress response in which proteins are trafficked to the vacuole/lysosome for degradation and recycling. Although autophagy and filamentous growth are both responsive to nitrogen stress, a link between these processes has not been investigated to date. Here, we present several studies describing an interrelationship between autophagy and filamentous growth. By microarray-based expression profiling, we detect extensive upregulation of the pathway governing autophagy during early PHG and find both processes active under conditions of nitrogen stress in a filamentous strain of budding yeast. Inhibition of autophagy results in increased PHG, and autophagy-deficient yeast induce PHG at higher concentrations of available nitrogen. Our results suggest a model in which autophagy mitigates nutrient stress, delaying the onset of PHG; conversely, inhibition of autophagy exacerbates nitrogen stress, resulting in precocious and overactive PHG. This physiological connection highlights the central role of autophagy in regulating the cells nutritional state and the responsiveness of PHG to that state.


Journal of Biological Chemistry | 2010

A profile of differentially abundant proteins at the yeast cell periphery during pseudohyphal growth.

Tao Xu; Christian A. Shively; Rui Jin; Matthew J. Eckwahl; Craig J. Dobry; Qingxuan Song; Anuj Kumar

Yeast filamentous growth is a stress response to conditions of nitrogen deprivation, wherein yeast colonies form pseudohyphal filaments of elongated and connected cells. As proteins mediating adhesion and transport are required for this growth transition, we expect that the protein complement at the yeast cell periphery plays a critical and tightly regulated role in pseudohyphal filamentation. To identify proteins differentially abundant at the yeast cell periphery during pseudohyphal growth, we generated quantitative proteomic profiles of plasma membrane protein preparations under conditions of vegetative growth and filamentation. By isobaric tags for relative and absolute quantification chemistry and two-dimensional liquid chromatography-tandem mass spectrometry, we profiled 2463 peptides and 356 proteins, identifying 11 differentially abundant proteins that localize to the yeast cell periphery. This protein set includes Ylr414cp, herein renamed Pun1p, a previously uncharacterized protein localized to the plasma membrane compartment of Can1. Pun1p abundance is doubled under conditions of nitrogen stress, and deletion of PUN1 abolishes filamentous growth in haploids and diploids; pun1Δ mutants are noninvasive, lack surface-spread filamentation, grow slowly, and exhibit impaired cell adhesion. Conversely, overexpression of PUN1 results in exaggerated cell elongation under conditions of nitrogen stress. PUN1 contributes to yeast nitrogen signaling, as pun1Δ mutants misregulate amino acid biosynthetic genes during nitrogen stress. By chromatin immunoprecipitation and reverse transcription-PCR, we find that the filamentous growth factor Mss11p directly binds the PUN1 promoter and regulates its transcription. In total, this study provides the first profile of differential protein abundance during pseudohyphal growth, identifying a previously uncharacterized membrane compartment of Can1 protein required for wild-type nitrogen signaling and filamentous growth.


Genetics | 2013

Genetic Networks Inducing Invasive Growth in Saccharomyces cerevisiae Identified Through Systematic Genome-Wide Overexpression

Christian A. Shively; Matthew J. Eckwahl; Craig J. Dobry; Dattatreya Mellacheruvu; Alexey I. Nesvizhskii; Anuj Kumar

The budding yeast Saccharomyces cerevisiae can respond to nutritional and environmental stress by implementing a morphogenetic program wherein cells elongate and interconnect, forming pseudohyphal filaments. This growth transition has been studied extensively as a model signaling system with similarity to processes of hyphal development that are linked with virulence in related fungal pathogens. Classic studies have identified core pseudohyphal growth signaling modules in yeast; however, the scope of regulatory networks that control yeast filamentation is broad and incompletely defined. Here, we address the genetic basis of yeast pseudohyphal growth by implementing a systematic analysis of 4909 genes for overexpression phenotypes in a filamentous strain of S. cerevisiae. Our results identify 551 genes conferring exaggerated invasive growth upon overexpression under normal vegetative growth conditions. This cohort includes 79 genes lacking previous phenotypic characterization. Pathway enrichment analysis of the gene set identifies networks mediating mitogen-activated protein kinase (MAPK) signaling and cell cycle progression. In particular, overexpression screening suggests that nuclear export of the osmoresponsive MAPK Hog1p may enhance pseudohyphal growth. The function of nuclear Hog1p is unclear from previous studies, but our analysis using a nuclear-depleted form of Hog1p is consistent with a role for nuclear Hog1p in repressing pseudohyphal growth. Through epistasis and deletion studies, we also identified genetic relationships with the G2 cyclin Clb2p and phenotypes in filamentation induced by S-phase arrest. In sum, this work presents a unique and informative resource toward understanding the breadth of genes and pathways that collectively constitute the molecular basis of filamentation.


Yeast | 2008

A small molecule‐directed approach to control protein localization and function

Prasanthi Geda; Srikanth Patury; Jun Ma; Nikë Bharucha; Craig J. Dobry; Sarah K. Lawson; Jason E. Gestwicki; Anuj Kumar

Protein localization is tightly linked with function, such that the subcellular distribution of a protein serves as an important control point regulating activity. Exploiting this regulatory mechanism, we present here a general approach by which protein location, and hence function, may be controlled on demand in the budding yeast. In this system a small molecule, rapamycin, is used to temporarily recruit a strong cellular address signal to the target protein, placing subcellular localization under control of the selective chemical stimulus. The kinetics of this system are rapid: rapamycin‐directed nucleo‐cytoplasmic transport is evident 10–12 min post‐treatment and the process is reversible upon removal of rapamycin. Accordingly, we envision this platform as a promising approach for the systematic construction of conditional loss‐of‐function mutants. As proof of principle, we used this system to direct nuclear export of the essential heat shock transcription factor Hsf1p, thereby mimicking the cell‐cycle arrest phenotype of an hsf1 temperature‐sensitive mutant. Our drug‐induced localization platform also provides a method by which protein localization can be uncoupled from endogenous cell signalling events, addressing the necessity or sufficiency of a given localization shift for a particular cell process. To illustrate, we directed the nuclear import of the calcineurin‐dependent transcription factor Crz1p in the absence of native stimuli; this analysis directly substantiates that nuclear translocation of this protein is insufficient for its transcriptional activity. In total, this technology represents a powerful method for the generation of conditional alleles and directed mislocalization studies in yeast, with potential applicability on a genome‐wide scale. Copyright


PLOS ONE | 2013

Discovery of potent broad spectrum antivirals derived from marine actinobacteria

Avi Raveh; Phillip C. Delekta; Craig J. Dobry; Weiping Peng; Pamela J. Schultz; Pennelope K. Blakely; Andrew W. Tai; Teatulohi Matainaho; David N. Irani; David H. Sherman; David J. Miller

Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds.


Journal of Medicinal Chemistry | 2013

Optimization of Novel Indole-2-carboxamide Inhibitors of Neurotropic Alphavirus Replication

Janice A. Sindac; Scott J. Barraza; Craig J. Dobry; Jianming Xiang; Pennelope K. Blakely; David N. Irani; Richard F. Keep; David J. Miller; Scott D. Larsen

Neurotropic alphaviruses, which include western equine encephalitis virus (WEEV) and Fort Morgan virus, are mosquito-borne pathogens that infect the central nervous system causing acute and potentially fatal encephalitis. We previously reported a novel series of indole-2-carboxamides as alphavirus replication inhibitors, one of which conferred protection against neuroadapted Sindbis virus infection in mice. We describe here further development of this series, resulting in 10-fold improvement in potency in a WEEV replicon assay and up to 40-fold increases in half-lives in mouse liver microsomes. Using a rhodamine123 uptake assay in MDR1-MDCKII cells, we were able to identify structural modifications that markedly reduce recognition by P-glycoprotein, the key efflux transporter at the blood-brain barrier. In a preliminary mouse PK study, we were able to demonstrate that two new analogues could achieve higher and/or longer plasma drug exposures than our previous lead and that one compound achieved measurable drug levels in the brain.


Eukaryotic Cell | 2008

Unconventional Genomic Architecture in the Budding Yeast Saccharomyces cerevisiae Masks the Nested Antisense Gene NAG1

Jun Ma; Craig J. Dobry; Damian J. Krysan; Anuj Kumar

ABSTRACT The genomic architecture of the budding yeast Saccharomyces cerevisiae is typical of other eukaryotes in that genes are spatially organized into discrete and nonoverlapping units. Inherent in this organizational model is the assumption that protein-coding sequences do not overlap completely. Here, we present evidence to the contrary, defining a previously overlooked yeast gene, NAG1 (for nested antisense gene) nested entirely within the coding sequence of the YGR031W open reading frame in an antisense orientation on the opposite strand. NAG1 encodes a 19-kDa protein, detected by Western blotting of hemagglutinin (HA)-tagged Nag1p with anti-HA antibodies and by β-galactosidase analysis of a NAG1-lacZ fusion. NAG1 is evolutionarily conserved as a unit with YGR031W in bacteria and fungi. Unlike the YGR031WP protein product, however, which localizes to the mitochondria, Nag1p localizes to the cell periphery, exhibiting properties consistent with those of a plasma membrane protein. Phenotypic analysis of a site-directed mutant (nag1-1) disruptive for NAG1 but silent with respect to YGR031W, defines a role for NAG1 in yeast cell wall biogenesis; microarray profiling of nag1-1 indicates decreased expression of genes contributing to cell wall organization, and the nag1-1 mutant is hypersensitive to the cell wall-perturbing agent calcofluor white. Furthermore, production of Nag1p is dependent upon the presence of the cell wall integrity pathway mitogen-activated protein kinase Slt2p and its downstream transcription factor Rlm1p. Thus, NAG1 is important for two reasons. First, it contributes to yeast cell wall biogenesis. Second, its genomic context is novel, raising the possibility that other nested protein-coding genes may exist in eukaryotic genomes.


Autophagy | 2008

Localization of autophagy-related proteins in yeast using a versatile plasmid-based resource of fluorescent protein fusions

Jun Ma; Nikë Bharucha; Craig J. Dobry; Ryan L. Frisch; Sarah K. Lawson; Anuj Kumar

Plasmid-based collections of fluorescent protein fusions are valuable and versatile resources, facilitating systematic studies of protein localization in multiple genetic backgrounds. At present, however, few such collections exist for the analysis of protein localization in any organism. To address this deficiency, we present here a plasmid-based set of resources for the analysis of protein localization in the budding yeast. Specifically, we constructed a suite of low-copy destination vectors for recombination-based cloning of yeast genes as fluorescent protein fusions. We cloned a set of 384 yeast genes encoding kinases, transcription factors, and signaling proteins as “recombination-ready” cassettes; by Gateway cloning, these genes with native promoters can be easily introduced into the destination vectors described above, generating carboxy-terminal fusions to fluorescent proteins. Using these reagents, we constructed a subcollection of 276 genes encoding carboxy-terminal fusions to yellow fluorescent protein (vYFP). This collection encompasses 14 autophagy-related (ATG) genes, and we localized these Atgp-vYFP chimeras during rapamycin-induced autophagy. To illustrate further the utility of this collection as a tool in exploring the functions and interactions of proteins in a pathway, we localized a subset of these Atg-vYFP chimeras in a strain deleted for the scaffolding protein Atg11p. In addition, we validated previous results identifying the integral membrane protein Atg9p at the pre-autophagosomal structure upon overexpression of ATG11 and upon deletion of ATG1. Collectively, this plasmid-based resource of yeast gene-vYFP fusions provides an initial toolkit for a variety of systematic and large-scale localization studies exploring pathway biology in the budding yeast.

Collaboration


Dive into the Craig J. Dobry's collaboration.

Top Co-Authors

Avatar

Anuj Kumar

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Jun Ma

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Jin

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge