Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig L. Franklin is active.

Publication


Featured researches published by Craig L. Franklin.


Journal of Experimental Medicine | 2008

Innocuous IFNγ induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production

Renu Jain; Danielle M. Tartar; Randal Keith Gregg; Rohit D. Divekar; J. Jeremiah Bell; Hyun Hee Lee; Ping Yu; Jason S. Ellis; Christine M. Hoeman; Craig L. Franklin; Habib Zaghouani

The role of Th17 cells in type I diabetes (TID) remains largely unknown. Glutamic acid decarboxylase (GAD) sequence 206–220 (designated GAD2) represents a late-stage epitope, but GAD2-specific T cell receptor transgenic T cells producing interferon γ (IFNγ) protect against passive TID. Because IFNγ is known to inhibit Th17 cells, effective presentation of GAD2 peptide under noninflammatory conditions may protect against TID at advanced disease stages. To test this premise, GAD2 was genetically incorporated into an immunoglobulin (Ig) molecule to magnify tolerance, and the resulting Ig-GAD2 was tested against TID at different stages of the disease. The findings indicated that Ig-GAD2 could not prevent TID at the preinsulitis phase, but delayed TID at the insulitis stage. More importantly, Ig-GAD2 sustained both clearance of pancreatic cell infiltration and β-cell division and restored normoglycemia when given to hyperglycemic mice at the prediabetic stage. This was dependent on the induction of splenic IFNγ that inhibited interleukin (IL)-17 production. In fact, neutralization of IFNγ led to a significant increase in the frequency of Th17 cells, and the treatment became nonprotective. Thus, IFNγ induced by an adjuvant free antigen, contrary to its usual inflammatory function, restores normoglycemia, most likely by localized bystander suppression of pathogenic IL-17–producing cells.


Laboratory Animal Medicine (Third Edition) | 2015

Biology and Diseases of Rats

Glen Otto; Craig L. Franklin; Charles B. Clifford

The laboratory rat, Rattus norvegicus, is within the order Rodentia and family Muridae. The genus Rattus contains at least 56 species (retrieved January 28, 2014, from the Integrated Taxonomic Information System online database http://www.itis.gov); however, the Norway rat, R. norvegicus, and the black rat, R. rattus, are the two species most commonly associated with the genus. Rattus rattus preceded R. norvegicus in migration from Asia to Europe and the Americas by several hundred years. The former species reached Europe in the 12th century, and the Americas in the 16th century; whereas, R. norvegicus emerged in the 18th century in Europe and in the 19th century in the Western Hemisphere. Globally, the Norway rat has largely displaced the black rat, probably because of the Norway rat’s larger size and aggressiveness. The domestication and introduction of the albino R. norvegicus is rooted by its use in Europe and America in the 1800s as prey for a sport (rat baiting) in which individuals would wager on which terrier dog would most swiftly kill the largest number of rats confined to a pit. Because of the large numbers of rats needed for this sport, wild rats were purpose-bred, and albinos were selected out by some people as a hobby (Robinson, 1965; Mayhew, 1851).


PLOS ONE | 2015

Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice

Aaron C. Ericsson; J. Wade Davis; William G. Spollen; Nathan J. Bivens; Scott A. Givan; Catherine Elizabeth Hagan; Mark A. McIntosh; Craig L. Franklin

The commensal gut microbiota has been implicated as a determinant in several human diseases and conditions. There is mounting evidence that the gut microbiota of laboratory mice (Mus musculus) similarly modulates the phenotype of mouse models used to study human disease and development. While differing model phenotypes have been reported using mice purchased from different vendors, the composition and uniformity of the fecal microbiota in mice of various genetic backgrounds from different vendors is unclear. Using culture-independent methods and robust statistical analysis, we demonstrate significant differences in the richness and diversity of fecal microbial populations in mice purchased from two large commercial vendors. Moreover, the abundance of many operational taxonomic units, often identified to the species level, as well as several higher taxa, differed in vendor- and strain-dependent manners. Such differences were evident in the fecal microbiota of weanling mice and persisted throughout the study, to twenty-four weeks of age. These data provide the first in-depth analysis of the developmental trajectory of the fecal microbiota in mice from different vendors, and a starting point from which researchers may be able to refine animal models affected by differences in the gut microbiota and thus possibly reduce the number of animals required to perform studies with sufficient statistical power.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency

Kiho Lee; Deug-Nam Kwon; Toshihiko Ezashi; Yun-Jung Choi; Chankyu Park; Aaron C. Ericsson; Alana N. Brown; Melissa Samuel; Kwang-Wook Park; Eric M. Walters; Dae-Young Kim; Jae-Hwan Kim; Craig L. Franklin; Clifton N. Murphy; R. Michael Roberts; Randall S. Prather; Jin-Hoi Kim

Significance Pigs have many features that make them attractive as biomedical models, especially in regenerative medicine. Here, we have introduced inactivating mutations simultaneously into both alleles of the recombination activating gene (RAG) 2 gene in fibroblasts derived from minipigs and then used somatic-cell nuclear transfer to produce RAG2−/− cloned animals with a severe immune deficiency (SCID) phenotype and lacking T and B cells. When human induced pluripotent (iPS) cells were injected into these SCID pigs, the animals readily form teratomas representing a wide range of human tissues. Provided they can be protected from pathogens, these genetically engineered pigs could be a valuable resource as models for human patients with analogous immunodeficiencies and for testing the safety and regenerative capacity of grafts derived from iPS cells. Pigs with severe combined immunodeficiency (SCID) may provide useful models for regenerative medicine, xenotransplantation, and tumor development and will aid in developing therapies for human SCID patients. Using a reporter-guided transcription activator-like effector nuclease (TALEN) system, we generated targeted modifications of recombination activating gene (RAG) 2 in somatic cells at high efficiency, including some that affected both alleles. Somatic-cell nuclear transfer performed with the mutated cells produced pigs with RAG2 mutations without integrated exogenous DNA. Biallelically modified pigs either lacked a thymus or had one that was underdeveloped. Their splenic white pulp lacked B and T cells. Under a conventional housing environment, the biallelic RAG2 mutants manifested a “failure to thrive” phenotype, with signs of inflammation and apoptosis in the spleen compared with age-matched wild-type animals by the time they were 4 wk of age. Pigs raised in a clean environment were healthier and, following injection of human induced pluripotent stem cells (iPSCs), quickly developed mature teratomas representing all three germ layers. The pigs also tolerated grafts of allogeneic porcine trophoblast stem cells. These SCID pigs should have a variety of uses in transplantation biology.


Gastroenterology | 2003

cAMP inhibition of murine intestinal Na/H exchange requires CFTR-mediated cell shrinkage of villus epithelium.

Lara R. Gawenis; Craig L. Franklin; Janet E. Simpson; Bradley A Palmer; Nancy M. Walker; Tarra M Wiggins; Lane L. Clarke

BACKGROUND AND AIMS Unlike the intestine of normal subjects, small-intestinal epithelia of cystic fibrosis patients and cystic fibrosis transmembrane conductance regulator protein-null (CFTR(-)) mice do not respond to stimulation of intracellular cyclic adenosine monophosphate with inhibition of electroneutral NaCl absorption. Because CFTR-mediated anion secretion has been associated with changes in crypt cell volume, we hypothesized that CFTR-mediated cell volume reduction in villus epithelium is required for intracellular cyclic adenosine monophosphate inhibition of Na(+)/H(+) exchanger (primarily Na(+)/H(+) exchanger 3) activity in the proximal small intestine. METHODS Transepithelial (22)Na flux across the jejuna of CFTR(+), CFTR(-), the basolateral membrane Na(+)/K(+)/2Cl(-) co-transporter protein NKCC1(+), and NKCC1(-) mice were correlated with changes in epithelial cell volume of the midvillus region. RESULTS Stimulation of intracellular cyclic adenosine monophosphate resulted in cessation of Na(+)/H(+) exchanger-mediated Na(+) absorption (J(ms)(NHE)) in CFTR(+) jejunum but had no effect on J(ms)(NHE) across CFTR(-) jejunum. Cell volume indices indicated an approximately 30% volume reduction of villus epithelial cells in CFTR(+) jejunum but no changes in CFTR(-) epithelium after intracellular cyclic adenosine monophosphate stimulation. In contrast, cell shrinkage induced by hypertonic medium inhibited J(ms)(NHE) in both CFTR(+) and CFTR(-) mice. Bumetanide treatment to inhibit Cl(-) secretion by blockade of the Na(+)/K(+)/2Cl(-) co-transporter, NKCC1, of stimulated CFTR(+) jejunum prevented maximal volume reduction of villus epithelium and recovered approximately 40% of J(ms)(NHE). Likewise, J(ms)(NHE) and cell volume were unaffected by intracellular cyclic adenosine monophosphate stimulation in NKCC1(-) jejuna. CONCLUSIONS These findings show a previously unrecognized role of functional CFTR expressed in villus epithelium: regulation of Na(+)/H(+) exchanger 3-mediated Na(+) absorption by alteration of epithelial cell volume.


Journal of Clinical Microbiology | 2001

Helicobacter typhlonius sp. nov., a Novel Murine Urease-Negative Helicobacter Species.

Craig L. Franklin; Peter L. Gorelick; Lela K. Riley; Floyd E. Dewhirst; Robert S. Livingston; Jerrold M. Ward; Catherine S. Beckwith; James G. Fox

ABSTRACT Over the past decade, several Helicobacter species have been isolated from rodents. With the advent of PCR for the diagnosis of infectious agents, it has become clear that several previously uncharacterized Helicobacter species also colonize rodents. In this report, we describe a novel urease-negative helicobacter,Helicobacter typhlonius sp. nov., which was isolated from colonies of laboratory mice independently by two laboratories. Infection of immunodeficient mice by this bacterium resulted in typhlocolitis similar to that observed with other helicobacter infections. H. typhlonius is genetically most closely related to H. hepaticus. Like H. hepaticus, it is a spiral bacterium with bipolar sheathed flagella. However, this novel species contains a large intervening sequence in its 16S rRNA gene and is biochemically distinct from H. hepaticus. Notably, H. typhlonius does not produce urease or H2S nor does it hydrolize indoxyl-acetate. Compared to other Helicobacter species that commonly colonize rodents,H. typhlonius was found to be less prevalent than H. hepaticus and H. rodentium but as prevalent asH. bilis. H. typhlonius joins a growing list of helicobacters that colonize mice and are capable of inducing enteric disease in various strains of immunodeficient mice.


Journal of General Virology | 1996

Molecular characterization of newly recognized rodent parvoviruses

David G. Besselsen; David J. Pintel; Gregory A. Purdy; Cynthia Besch-Williford; Craig L. Franklin; Reuel R. Hook; Lela K. Riley

Several autonomous rodent parvoviruses distinct from the prototypic rodent parvoviruses have been isolated. These include variants of a mouse parvovirus (MPV), a hamster isolate designated hamster parvovirus (HaPV), and a variant strain of minute virus of mice (MVM) designated MVM-Cutter or MVM(c). In this study, the DNA sequence of the coding regions of the viral genome and the predicted protein sequences for each of these new isolates were determined and compared to the immunosuppressive and prototypic strains of MVM [MVM(i) and MVM(p)], the rodent parvovirus H-1, and LuIII, an autonomous parvovirus of uncertain host origin. Sequence comparisons showed that the MPV isolates were almost identical, HaPV was very similar to MPV, and MVM(c) was most similar to MVM(i) and MVM(p). Haemagglutination inhibition assays revealed that MPV and HaPV represent two serotypes distinct from previously characterized rodent parvovirus serotypes while MVM(c) belongs to the MVM serotype. Each of the newly isolated rodent parvoviruses was shown to encapsidate a predominantly negative-sense 5 kb DNA genome and to encode two nonstructural proteins (NS1 and NS2) and two structural viral proteins (VP1 and VP2). These studies indicate that MPV and HaPV are autonomous parvoviruses distinct from previously characterized parvoviruses and MVM(c) is a variant strain of MVM distinct from MVM(i) and MVM(p).


Clinical and Vaccine Immunology | 2002

Serodiagnosis of Mice Minute Virus and Mouse Parvovirus Infections in Mice by Enzyme-Linked Immunosorbent Assay with Baculovirus-Expressed Recombinant VP2 Proteins

Robert S. Livingston; David G. Besselsen; Earl K. Steffen; Cynthia Besch-Williford; Craig L. Franklin; Lela K. Riley

ABSTRACT Mice minute virus (MMV) and mouse parvovirus (MPV) type 1 are the two parvoviruses known to naturally infect laboratory mice and are among the most prevalent infectious agents found in contemporary laboratory mouse colonies. Serologic assays are commonly used to diagnose MMV and MPV infections in laboratory mice; however, highly accurate, high-throughput serologic assays for the detection of MMV- and MPV-infected mice are needed. To this end, the major capsid viral protein (VP2) genes of MMV and MPV were cloned and MMV recombinant VP2 (rVP2) and MPV rVP2 proteins were expressed by using a baculovirus system. MMV rVP2 and MPV rVP2 spontaneously formed virus-like particles that were morphologically similar to empty parvovirus capsids. These proteins were used as antigens in enzyme-linked immunosorbent assays (ELISAs) to detect anti-MMV or anti-MPV antibodies in the sera of infected mice. Sera from mice experimentally infected with MMV (n = 43) or MPV (n = 35) and sera from uninfected mice (n = 30) were used to evaluate the ELISAs. The MMV ELISA was 100% sensitive and 100% specific in detecting MMV-infected mice, and the MPV ELISA was 100% sensitive and 98.6% specific in detecting MPV-infected mice. Both assays outperformed a parvovirus ELISA that uses a recombinant nonstructural protein (NS1) of MMV as antigen. The MMV rVP2 and MPV rVP2 proteins provide a ready source of easily produced antigen, and the ELISAs developed provide highly accurate, high-throughput assays for the serodiagnosis of MMV and MPV infections in laboratory mice.


Oncotarget | 2015

Differential susceptibility to colorectal cancer due to naturally occurring gut microbiota

Aaron C. Ericsson; Sadia Akter; Marina McCoy Hanson; Susheel Busi; Taybor Parker; Rebecca Schehr; Miriam Hankins; Carin E. Ahner; Justin W. Davis; Craig L. Franklin; James M. Amos-Landgraf; Elizabeth C. Bryda

Recent studies investigating the human microbiome have identified particular bacterial species that correlate with the presence of colorectal cancer. To evaluate the role of qualitatively different but naturally occurring gut microbiota and the relationship with colorectal cancer development, genetically identical embryos from the Polyposis in Rat Colon (Pirc) rat model of colorectal cancer were transferred into recipients of three different genetic backgrounds (F344/NHsd, LEW/SsNHsd, and Crl:SD). Tumor development in the pups was tracked longitudinally via colonoscopy, and end-stage tumor burden was determined. To confirm vertical transmission and identify associations between the gut microbiota and disease phenotype, the fecal microbiota was characterized in recipient dams 24 hours pre-partum, and in Pirc rat offspring prior to and during disease progression. Our data show that the gut microbiota varies between rat strains, with LEW/SsNHsd having a greater relative abundance of the bacteria Prevotella copri. The mature gut microbiota of pups resembled the profile of their dams, indicating that the dam is the primary determinant of the developing microbiota. Both male and female F344-Pirc rats harboring the Lewis microbiota had decreased tumor burden relative to genetically identical rats harboring F344 or SD microbiota. Significant negative correlations were detected between tumor burden and the relative abundance of specific taxa from samples taken at weaning and shortly thereafter, prior to observable adenoma development. Notably, this naturally occurring variation in the gut microbiota is associated with a significant difference in severity of colorectal cancer, and the abundance of certain taxa is associated with decreased tumor burden.


Journal of Immunology | 2011

Coordinate Regulation of GATA-3 and Th2 Cytokine Gene Expression by the RNA-Binding Protein HuR

Cristiana Stellato; Matthew M. Gubin; Joseph Magee; Xi Fang; Jinshui Fan; Danielle M. Tartar; Jing Chen; Garrett M. Dahm; Robert Calaluce; Francesca Mori; Glenn A. Jackson; Vincenzo Casolaro; Craig L. Franklin; Ulus Atasoy

The posttranscriptional mechanisms whereby RNA-binding proteins (RBPs) regulate T cell differentiation remain unclear. RBPs can coordinately regulate the expression of functionally related genes via binding to shared regulatory sequences, such as the adenylate-uridylate–rich elements (AREs) present in the 3′ untranslated region (UTR) of mRNA. The RBP HuR posttranscriptionally regulates IL-4, IL-13, and other Th2 cell-restricted transcripts. We hypothesized that the ARE-bearing GATA-3 gene, a critical regulator of Th2 polarization, is under HuR control as part of its coordinate posttranscriptional regulation of the Th2 program. We report that in parallel with stimulus-induced increase in GATA-3 mRNA and protein levels, GATA-3 mRNA half-life is increased after restimulation in the human T cell line Jurkat, in human memory and Th2 cells, and in murine Th2-skewed cells. We demonstrate by immunoprecipitation of ribonucleoprotein complexes that HuR associates with the GATA-3 endogenous transcript in human T cells and found, using biotin pulldown assay, that HuR specifically interacts with its 3′UTR. Using both loss-of-function and gain-of-function approaches in vitro and in animal models, we show that HuR is a critical mediator of stimulus-induced increase in GATA-3 mRNA and protein expression and that it positively influences GATA-3 mRNA turnover, in parallel with selective promotion of Th2 cytokine overexpression. These results suggest that HuR-driven posttranscriptional control plays a significant role in T cell development and effector function in both murine and human systems. A better understanding of HuR-mediated control of Th2 polarization may have utility in altering allergic airway inflammation in human asthmatic patients.

Collaboration


Dive into the Craig L. Franklin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge