Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig L. Peebles is active.

Publication


Featured researches published by Craig L. Peebles.


PLOS Genetics | 2006

Exploring the Mycobacteriophage Metaproteome: Phage Genomics as an Educational Platform

Graham F. Hatfull; Marisa L. Pedulla; Deborah Jacobs-Sera; Pauline M. Cichon; Amy Foley; Michael E. Ford; Rebecca M. Gonda; Jennifer M. Houtz; Andrew J. Hryckowian; Vanessa A. Kelchner; Swathi Namburi; Kostandin V. Pajcini; Mark G. Popovich; Donald T. Schleicher; Brian Simanek; Alexis L. Smith; G. Zdanowicz; Vanaja Kumar; Craig L. Peebles; William R. Jacobs; Jeffrey G. Lawrence; Roger W. Hendrix

Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 “phamilies” of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774) of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three—encoding tape-measure proteins, lysins, and minor tail proteins—are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15%) have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education.


Journal of Molecular Biology | 2010

Comparative Genomic Analysis of 60 Mycobacteriophage Genomes: Genome Clustering, Gene Acquisition, and Gene Size

Graham F. Hatfull; Deborah Jacobs-Sera; Jeffrey G. Lawrence; Welkin H. Pope; Daniel A. Russell; Ching Chung Ko; Rebecca J. Weber; Manisha C. Patel; Katherine L. Germane; Robert H. Edgar; Natasha N. Hoyte; Charles A. Bowman; Anthony T. Tantoco; Elizabeth C. Paladin; Marlana S. Myers; Alexis L. Smith; Molly S. Grace; Thuy T. Pham; Matthew B. O'Brien; Amy M. Vogelsberger; Andrew J. Hryckowian; Jessica L. Wynalek; Helen Donis-Keller; Matt W. Bogel; Craig L. Peebles; Steven G. Cresawn; Roger W. Hendrix

Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of 60-all infecting a common bacterial host-provides further insight into their diversity and evolution. Of the 60 phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, 5 of which can be further divided into subclusters; 5 genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the 6 genomes in Cluster D share more than 97.5% average nucleotide similarity with one another. In contrast, similarity between the 2 genomes in Cluster I is barely detectable by diagonal plot analysis. In total, 6858 predicted open-reading frames have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries, and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit a smaller average size than genes of their host (205 residues compared with 315), phage genes in higher flux average only 100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains.


Journal of Virology | 2014

Cluster M mycobacteriophages Bongo, PegLeg, and Rey with unusually large repertoires of tRNA isotypes

Welkin H. Pope; Kirk R. Anders; Madison Baird; Charles A. Bowman; Michelle M. Boyle; Gregory W. Broussard; Tiffany W. Chow; Kari Clase; Shannon D. Cooper; Kathleen Cornely; Randall J. DeJong; Véronique A. Delesalle; Lisa Deng; David Dunbar; Nicholas P. Edgington; Christina M. Ferreira; Kathleen Weston Hafer; Grant A. Hartzog; J. Robert Hatherill; Lee E. Hughes; Khristina Ipapo; Gregory P. Krukonis; Christopher G Meier; Denise L. Monti; Matthew R. Olm; Shallee T. Page; Craig L. Peebles; Claire A. Rinehart; Michael R. Rubin; Daniel A. Russell

ABSTRACT Genomic analysis of a large set of phages infecting the common host Mycobacterium smegmatis mc2155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode. IMPORTANCE The bacteriophage population is vast, dynamic, and old and plays a central role in bacterial pathogenicity. We know surprisingly little about the genetic diversity of the phage population, although metagenomic and phage genome sequencing indicates that it is great. Probing the depth of genetic diversity of phages of a common host, Mycobacterium smegmatis, provides a higher resolution of the phage population and how it has evolved. Three new phages constituting a new cluster M further expand the diversity of the mycobacteriophages and introduce novel features. As such, they provide insights into phage genome architecture, virion structure, and gene regulation at the transcriptional and translational levels.


Journal of Virology | 2009

Mutational Analysis of a Conserved Glutamic Acid Required for Self-Catalyzed Cross-Linking of Bacteriophage HK97 Capsids

Lindsay Dierkes; Craig L. Peebles; Brian Firek; Roger W. Hendrix; Robert L. Duda

ABSTRACT The capsid of bacteriophage HK97 is stabilized by ∼400 covalent cross-links between subunits which form without any action by external enzymes or cofactors. Cross-linking only occurs in fully assembled particles after large-scale structural changes bring together side chains from three subunits at each cross-linking site. Isopeptide cross-links form between asparagine and lysine side chains on two subunits. The carboxylate of glutamic acid 363 (E363) from a third subunit is found ∼2.4 Å from the isopeptide bond in the partly hydrophobic pocket that contains the cross-link. It was previously reported without supporting data that changing E363 to alanine abolishes cross-linking, suggesting that E363 plays a role in cross-linking. This alanine mutant and six additional substitutions for E363 were fully characterized and the proheads produced by the mutants were tested for their ability to cross-link under a variety of conditions. Aspartic acid and histidine substitutions supported cross-linking to a significant extent, while alanine, asparagine, glutamine, and tyrosine did not, suggesting that residue 363 acts as a proton acceptor during cross-linking. These results support a chemical mechanism, not yet fully tested, that incorporates this suggestion, as well as features of the structure at the cross-link site. The chemically identical isopeptide bonds recently documented in bacterial pili have a strikingly similar chemical geometry at their cross-linking sites, suggesting a common chemical mechanism with the phage protein, but the completely different structures and folds of the two proteins argues that the phage capsid and bacterial pilus proteins have achieved shared cross-linking chemistry by convergent evolution.


Journal of Bacteriology | 2004

A Conjugation-Based System for Genetic Analysis of Group II Intron Splicing in Lactococcus lactis

Joanna R. Klein; Yuqing Chen; Dawn A. Manias; Jin Zhuo; Liang Zhou; Craig L. Peebles; Gary M. Dunny

The conjugative element pRS01 from Lactococcus lactis encodes the putative relaxase protein LtrB. The ltrB gene is interrupted by the functional group II intron Ll.ltrB. Accurate splicing of the two ltrB exons is required for synthesis of the mRNA encoding the LtrB conjugative relaxase and subsequent plasmid transfer. A conjugation-based genetic assay was developed to identify Ll.ltrB mutations that affect splicing. In this assay a nonsplicing, transfer-defective pRS01 derivative (pM1014) and a shuttle vector carrying the ltrB region, including the Ll.ltrB intron (pCOM9), are used. pCOM9 provides splicing-dependent complementation of the transfer defect of pM1014. Site-directed mutations within Ll.ltrB, either in the catalytic RNA or in the intron-encoded protein gene ltrA, were generated in the context of pCOM9. When these mutants were tested in the conjugation-based assay, significantly reduced mating was observed. Quantitative molecular analysis of in vivo splicing activity confirmed that the observed mating defects resulted from reduced splicing. Once the system was validated for the engineered mutants, random mutagenesis of the intron followed by genetic and molecular screening for splicing defects resulted in identification of point mutations that affect splicing.


Basic life sciences | 1986

Mitochondrial Gene Expression in Yeast: Further Studies of a Self-Splicing Group II Intron

Philip S. Perlman; Kevin A. Jarrell; Rosemary C. Dietrich; Craig L. Peebles; Steven Romiti; Ethan Benatan

The mitochondrial genome of bakers’ yeast, Saccharomyces cerevisiae, contains genes for 25 tRNAs, two rRNAs, an RNA species involved in tRNA processing, and structural genes for three subunits of cytochrome c oxidase, three subunits of the ATPase, the apoprotein of cytochrome b, and a ribosomal protein (reviewed in Ref. 12). So far, eight sites of transcription initiation have been identified (9); while some additional promoters may remain to be defined, it is clear that groups of adjacent genes are usually transcribed together (e.g., Ref. 16, 25, and 43). Thus, RNA processing events play an important, if not essential, role in mitochondrial gene expression.


Virology | 2017

On the catalytic mechanism of bacteriophage HK97 capsid crosslinking

DanJu Tso; Craig L. Peebles; Joshua B. Maurer; Robert L. Duda; Roger W. Hendrix

During maturation of the phage HK97 capsid, each of the 415 capsid subunits forms covalent bonds to neighboring subunits, stabilizing the capsid. Crosslinking is catalyzed not by a separate enzyme but by subunits of the assembled capsid in response to conformational rearrangements during maturation. This report investigates the catalytic mechanism. Earlier work established that the crosslinks are isopeptide (amide) bonds between side chains of a lysine on one subunit and an asparagine on another subunit, aided by a catalytic glutamate on a third subunit. The mature capsid structure suggests that the reaction may be facilitated by the arrival of a valine with the lysine to complete a hydrophobic pocket surrounding the glutamate, lysine and asparagine. We show that this valine has an essential role for efficient crosslinking, and that any of six other amino acids can successfully substitute for valine. Evidently none of the remaining 13 amino acids will work.


Genome Announcements | 2017

Complete Genome Sequences of Three Novel Pseudomonas fluorescens SBW25 Bacteriophages, Noxifer, Phabio, and Skulduggery

Joanna K. Wojtus; Jess L. Fitch; Eli Christian; Tara Dalefield; Jacob K. Lawes; Kirtana Kumar; Craig L. Peebles; Eric Altermann; Heather Hendrickson

ABSTRACT Three novel bacteriophages, two of which are jumbophages, were isolated from compost in Auckland, New Zealand. Noxifer, Phabio, and Skulduggery are double-stranded DNA (dsDNA) phages with genome sizes of 278,136 bp (Noxifer), 309,157 bp (Phabio), and 62,978 bp (Skulduggery).


Journal of Molecular Biology | 2009

The genome of Bacillus subtilis bacteriophage SPO1

Charles R. Stewart; Sherwood Casjens; Steven G. Cresawn; Jennifer M. Houtz; Alexis L. Smith; Michael E. Ford; Craig L. Peebles; Graham F. Hatfull; Roger W. Hendrix; Wai Mun Huang; Marisa L. Pedulla


Nucleic Acids Research | 1993

Domain 5 interacts with domain 6 and influences the second transesterification reaction of group II intron self-splicing

Sulayman D. Dib-Hajj; Scott C. Boulanger; Sharda K. Hebbar; Craig L. Peebles; James S. Franzen; Philip S. Perlman

Collaboration


Dive into the Craig L. Peebles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mincheng Zhang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Philip S. Perlman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge