Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig M. Bula is active.

Publication


Featured researches published by Craig M. Bula.


Journal of Biological Chemistry | 2005

Nongenotropic, Anti-Apoptotic Signaling of 1α,25(OH)2-Vitamin D3 and Analogs through the Ligand Binding Domain of the Vitamin D Receptor in Osteoblasts and Osteocytes MEDIATION BY Src, PHOSPHATIDYLINOSITOL 3-, AND JNK KINASES

Anthony M. Vertino; Craig M. Bula; Jin Ran Chen; Maria Rosário Almeida; Li Han; Teresita Bellido; Stavroula Kousteni; Anthony W. Norman; Stavros C. Manolagas

Because sex steroids regulate the life span of bone cells by modulating cytoplasmic kinase activity via a nongenotropic action of their classical receptors, we have explored the possibility that the vitamin D nuclear receptor (VDR) might exhibit similar nongenotropic actions. We report that the conformationally flexible full VDR agonist, 1α,25(OH)2-vitamin D3 (1α,25(OH)2D3), and the 6-s-cis-locked 1α,25(OH)2-lumisterol3 (JN) analog, also acting through the VDR but with poor transcriptional activity, protected murine osteoblastic or osteocytic cells from apoptosis. This effect was reproduced in HeLa cells transiently transfected with either wild type VDR or a mutant consisting of only the VDR ligand binding domain. The VDR ligand binding domain bound [3H]1α,25(OH)2D3 as effectively as wild type VDR but did not induce vitamin D response element-mediated transcription. The anti-apoptotic effects of 1α,25(OH)2D3 and the 6-s-cis-locked 1α,25(OH)2-lumisterol3 analog in calvaria cells were blocked by three cytoplasmic kinase inhibitors: Src kinase inhibitor 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1), phosphatidylinositol 3 kinase inhibitor Wortmannin, and the JNK kinase inhibitor SP600125. However, inhibition of p38 with SB203580 or ERK with either U0126 or a transfected dominant negative MEK did not interfere with these anti-apoptotic actions. Further, 1α,25(OH)2D3 induced rapid (5 min) association of VDR with Src kinase in OB-6 cells. Finally, actinomycin D or cycloheximide prevented the anti-apoptotic effect of 1α,25(OH)2D3, indicating that transcriptional events are also required. These findings suggest that nongenotropic modulation of kinase activity is also a general property of the VDR and that ligands that activate nongenotropic signals, but lack transcriptional activity, display different biological profiles from the steroid hormone 1α,25(OH)2D3.


Steroids | 2001

Different shapes of the steroid hormone 1α,25(OH)2-vitamin D3 act as agonists for two different receptors in the vitamin D endocrine system to mediate genomic and rapid responses☆

Anthony W. Norman; Helen L. Henry; June E. Bishop; Xinde Song; Craig M. Bula; William H. Okamura

Vitamin D(3) produces biologic responses as a consequence of its metabolism into 1alpha,25(OH)(2)-vitamin D(3) [1alpha,25(OH)(2)D(3)] and 24R,25(OH)(2)-vitamin D(3). The metabolic production of these two seco steroids and their generation of the plethora of biologic actions that are attributable to the parent vitamin D(3) are orchestrated via the integrated operation of the vitamin D endocrine system. This system is very similar in its organization to that of classic endocrine systems and is characterized by an endocrine gland (the kidney, the source of the two steroid hormones), target cells which possess receptors for the steroid hormones, and a feed-back loop involving changes in serum Ca(2+) that alter the secretion of parathyroid hormone (a stimulator of the renal 1-hydroxylase) which modulates the output by the kidney of the steroid hormones. There are, however, at least two unique aspects to the vitamin D endocrine system. (a) The chemical structures of vitamin D and its steroid hormones dictate that these be highly conformationally flexible molecules present a wide variety of shapes to their biologic environments. (b) It is now believed that 1alpha,25(OH)(2)D(3) produces biologic responses through two distinct receptors which recognize totally different shapes of the conformationally flexible 1alpha,25(OH)(2)D(3). Thus, the classic actions of 1alpha,25(OH)(2)D(3) to regulate gene transcription occur as a consequence of the stereospecific interaction of a modified 6-s-trans bowl-shape of 1alpha,25(OH)(2)D(3) with its nuclear receptor (VDR(nuc)). The ability of 1alpha,25(OH)(2)D(3) to generate a variety of rapid (seconds to minutes) biologic responses (opening of chloride channels, activation of PKC and MAP kinases) requires a planar 6-s-cis ligand shape which is recognized by a putative plasma membrane receptor (VDR(mem)) to initiate appropriate signal transduction pathways. This report summarizes the evidence for the specificity of different ligand shapes and the operation of the two receptor families for 1alpha,25(OH)(2)D(3).


Steroids | 1999

Rapid and genomic biological responses are mediated by different shapes of the agonist steroid hormone, 1α, 25(OH)2vitamin D3

Anthony W. Norman; Xinde Song; Laura P. Zanello; Craig M. Bula; William H. Okamura

The hormone 1alpha,25(OH)2vitamin D3 (1,25-D) produces biological responses via both genomic and rapid mechanisms. The genomic responses are linked to a nuclear receptor, while the rapid responses are believed to utilize other signal transduction pathways that are likely linked to a putative cell membrane receptor for 1,25-D. The natural seco-steroid, 1,25-D, is capable of facile rotation about its 6,7 single carbon bond to permit generation of a continuum of potential ligand shapes extending from the 6-s-cis (6C) to the 6-s-trans (6T). To identify the shape of the conformer(s) that can serve as agonists for the genomic and rapid responses, we synthesized two families of analogs that were locked in either the 6T or 6C conformation. We found that 6T-locked analogs were inactive or significantly less active than 1,25-D in both rapid responses (transcaltachia or the rapid stimulation of intestinal Ca2+ absorption in perfused chick intestine, stimulation of whole cell chloride currents in osteoblastic ROS 17/2.8 cells, and stimulation of phosphorylation of mitogen-activated protein kinase in promyelocytic NB4 leukemic cells) and in genomic responses (induction of osteocalcin in human MG-63 osteoblastic cells). For genomic responses, the 6C-locked analogs bound poorly to the nuclear receptor and were much less potent than 1,25-D. In contrast, the 6C-locked analogs were potent agonists of the three rapid responses studied and had activities equivalent to 1,25-D. These results demonstrate that the signal transduction pathways that support rapid and genomic responses can discriminate between different shapes of the conformationally flexible 1,25-D.


Journal of Biological Chemistry | 2009

On the Mechanism Underlying (23S)-25-Dehydro-1α(OH)-vitamin D3-26,23-lactone Antagonism of hVDRwt Gene Activation and Its Switch to a Superagonist

Mathew T. Mizwicki; Craig M. Bula; Paween Mahinthichaichan; Helen L. Henry; Seiichi Ishizuka; Anthony W. Norman

(23S)-25-Dehydro-1α(OH)-vitamin D3-26,23-lactone (MK) is an antagonist of the 1α,25(OH)2-vitamin D3 (1,25D)/human nuclear vitamin D receptor (hVDR) transcription initiation complex, where the activation helix (i.e. helix-12) is closed. To study the mode of antagonism of MK an hVDR mutant library was designed to alter the free molecular volume in the region of the hVDR ligand binding pocket occupied by the ligand side-chain atoms (i.e. proximal to helix-12). The 1,25D-hVDR structure-function studies demonstrate that 1) van der Waals contacts between helix-12 residues Leu-414 and Val-418 and 1,25D enhance the stability of the closed helix-12 conformer and 2) removal of the side-chain H-bonds to His-305(F) and/or His-397(F) have no effect on 1,25D transactivation, even though they reduce the binding affinity of 1,25D. The MK structure-function results demonstrate that the His-305, Leu-404, Leu-414, and Val-418 mutations, which increase the free volume of the hVDR ligand binding pocket, significantly enhance MK antagonist potency. Surprisingly, the H305F and H305F/H397F mutations turn MK into a VDR superagonist (EC50 ∼ 0.05 nm) but do not concomitantly alter MK binding affinity. Molecular modeling studies demonstrate that MK antagonism stems from its side chain energetically preferring a pose in the VDR ligand binding pocket where its terminal C26-methylene atom is far removed from helix-12. MK superagonism results from an energetically favored increase in interaction between Leu-404/Val-418 and C26, resulting in an increase in the stability and population of the closed, helix-12 conformer. Finally, the results/model generated, coupled with application of a VDR ensemble allosterics model, provide an understanding for the species specificity of MK.


Molecular Endocrinology | 2009

Prolactin Blocks Nuclear Translocation of VDR by Regulating Its Interaction with BRCA1 in Osteosarcoma Cells

Changhui Deng; Eric Ueda; KuanHui E. Chen; Craig M. Bula; Anthony W. Norman; Richard A. Luben; Ameae M. Walker

Based on their content of prolactin receptors, osteosarcoma cells were predicted to be responsive to prolactin (PRL), but whether PRL would be beneficial or contribute to pathogenesis was unclear. 1,25(OH)(2) vitamin D(3) [1alpha,25(OH)(2)D(3)] has antiproliferative effects on osteosarcoma cells, and a complex interregulatory situation exists between PRL and 1alpha,25(OH)(2)D(3). Using osteosarcoma cells, Western blot, real time RT-PCR, and promoter-luciferase assays, we have examined the interaction between PRL and 1alpha,25(OH)(2)D(3) and demonstrated that physiological concentrations of PRL block increased osteocalcin and vitamin D receptor (VDR) expression in response to 1alpha,25(OH)(2)D(3.) This blockade was shown to be the result of lack of nuclear accumulation of the VDR in response to 1alpha,25(OH)(2)D(3). Although inhibition of proteasomic degradation with MG132 had no effect on the VDR itself in a 30-min time frame, it relieved the blockade by PRL. Analysis of ubiquitinated proteins brought down by immunoprecipitation with anti-VDR showed PRL regulation of a 250-kDa protein-VDR complex. P250 was identified as the breast cancer tumor suppressor gene product, BRCA1, by Western blot of the VDR immunoprecipitate and confirmed by immunoprecipitation with anti-BRCA1 and blotting for the VDR in the absence and presence of PRL. Knockdown of BRCA1 inhibited nuclear translocation of the VDR and the ability of 1alpha,25(OH)(2)D(3) to induce the VDR. This, to our knowledge, is the first demonstration of a role for BRCA1 in nuclear accumulation of a steroid hormone and the first demonstration that PRL has the potential to affect the cell cycle through effects on BRCA1.


The Journal of Steroid Biochemistry and Molecular Biology | 2007

New Insights into Vitamin D Sterol-VDR Proteolysis, Allostery, Structure-Function from the Perspective of a Conformational Ensemble Model

Mathew T. Mizwicki; Craig M. Bula; June E. Bishop; Anthony W. Norman

Recently, we have developed a Vitamin D sterol (VDS)-VDR conformational ensemble model. This model can be broken down into three individual, yet interlinked parts: (a) the conformationally flexible VDS, (b) the apo/holo-VDR helix-12 (H12) conformational ensemble, and (c) the presence of two VDR ligand binding pockets (LBPs); one thermodynamically favored (the genomic pocket, G-pocket) and the other kinetically favored by VDSs (the alternative pocket, A-pocket). One focus of this study is to use directed VDR mutagenesis to (1) demonstrate H12 is stabilized in the transcriptionally active closed conformation (hVDR-c1) by three salt-bridges that span the length of H12 (cationic residues R154, K264 and R402), (2) to elucidate the VDR trypsin sites [R173 (hVDR-c1), K413 (hVDR-c2) and R402 (hVDR-c3)] and (3) demonstrate the apo-VDR H12 equilibrium can be shifted. The other focus of this study is to apply the model to generate a mechanistic understanding to discrepancies observed in structure-function data obtained with a variety of 1alpha,25(OH)(2)-Vitamin D(3) (1,25D) A-ring and side-chain analogs, and side-chain metabolites. We will demonstrate that these structure-function conundrums can be rationalized, for the most part by focusing on alterations in the VDS conformational flexibility and the elementary interaction between the VDS and the VDR A- and G-pockets, relative to the control, 1,25D.


The Journal of Steroid Biochemistry and Molecular Biology | 2005

A perspective on how the Vitamin D sterol/Vitamin D receptor (VDR) conformational ensemble model can potentially be used to understand the structure–function results of A-ring modified Vitamin D sterols

Mathew T. Mizwicki; Craig M. Bula; June E. Bishop; Anthony W. Norman

The steroid hormone 1alpha,25(OH)(2)-Vitamin D(3) (1,25D) activates both genomic and non-genomic intracellular signaling cascades. It is also well recognized that co-incubation of 1,25D with its C-1 epimer, 1beta,25D (HL), suppresses the efficiency of the non-genomic signal activated by 1,25D alone and that its C-3 epimer, 3alpha-1,25D (HJ) is nearly as potent as 1,25D in suppressing PTH secretion, believed to be propagated by 1,25Ds genomic signaling. Both these sterols lack the hypercalcemic effect induced by pharmacological doses of 1,25D and have reduced VDR affinity compared to 1,25D, as measured in a steroid competition assay. Recent functional studies suggest that the VDR is required for both non-genomic and genomic signaling. Along these lines we have recently proposed a Vitamin D sterol/VDR conformational ensemble model that posits the VDR contains two distinct, yet overlapping ligand binding sites, and that the potential differential stabilities of 1,25D and HL in these two pockets can be used to explain their different non-genomic signaling properties. The overlapping region is predominantly occupied by the sterols A-ring when it is bound to either the genomic ligand binding pocket (G-pocket), defined by X-ray crystallography, or the alternative ligand binding pocket (A-pocket), discovered using in silico techniques (directed docking). Therefore, to gain further insight into the potential application of this model we docked the other A-ring diastereomer [(1beta,3alpha)=HH] of 1,25D and its 1- and 3-deoxy forms (25D and CF, respectively) to the A- and G-pockets to assess their potential stabilities in the pockets, relative to 1,25D. The models were then used to provide putative mechanistic arguments for their known structure-function experimental results. This model may provide new insights into how Vitamin D sterols that uncouple the unwanted hypercalcemic effect from attractive growth inhibitory/differentiation properties can do so by differentially stabilizing different subpopulations of VDR conformational ensemble members.


The Journal of Steroid Biochemistry and Molecular Biology | 2004

Characterization of five 19-nor-analogs of 1α,25(OH)2-Vitamin D3 with 20-cyclopropyl-modified side-chains: implications for ligand binding and calcemic properties ☆

Christopher J. Olivera; Craig M. Bula; June E. Bishop; Luciano Adorini; Percy S. Manchand; Milan R. Uskokovic; Anthony W. Norman

The steroid hormone 1alpha,25(OH)(2)-Vitamin D(3) [1alpha,25(OH)(2)D(3)] exerts a wide variety of biological actions through one or more receptors/binding proteins. The nuclear Vitamin D receptor (VDR) when bound to its natural ligand, 1alpha,25(OH)(2)D(3), can stimulate transcription of a wide variety of genes. The synthesis of 1alpha,25(OH)(2)D(3) analogs allows the study of structure-function relationships between ligand and the VDR. 1alpha,25(OH)(2)D(3) is a conformationally flexible molecule; specifically the side-chain of the hormone can display a large variety of shapes for its receptor. Here, we describe and analyze the properties of 10 1alpha,25(OH)(2)D(3) analogs modified at the side-chain of which five lack carbon-19 (19-nor) but have a novel 20-cyclopropyl functionality. Analog NG [20,21-methylene-23-yne-26,27-F(6)-19-nor-1alpha,25(OH)(2)D(3)] possesses a respectable binding affinity for the VDR and exhibits a high transcriptional activity (EC(50) approximately 10pM), while retaining low induction of hypercalcemia in vivo in the mouse, making it a primary candidate for further analyses of its anti-proliferative and/or cell differentiating properties.


The Journal of Steroid Biochemistry and Molecular Biology | 2005

Effect of 25-hydroxyl group orientation on biological activity and binding to the 1α,25-dihydroxy vitamin D3 receptor

Elaine D. Collins; June E. Bishop; Craig M. Bula; Alejandra Acevedo; William H. Okamura; Anthony W. Norman

The hormonal form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1,25D), generates many biological actions by interactions with its nuclear receptor (VDR). The presence of a carbon-25 hydroxyl group is necessary for optimizing binding to the VDR. To examine the effect of spatial orientation of the 25-hydroxyl, two pairs of 22,23-allene sidechain analogs were studied. The 22R orientation in analogs HR (52+/-2%) and LA (154+/-19%) resulted in higher affinity binding than the 22S orientation of analogs HQ (21+/-3%) and LB (3.5+/-1.3%; 1,25D=100%). Limited trypsin proteolysis showed that 22R analogs induced VDR conformational changes better able to protect VDR from digestion than 22S analogs. 22R analogs were also able to induce gene transcription at 10-100-fold lower concentrations than 1,25D; 22S analogs were less effective. Analog LA was at least 10-fold more potent than 1,25D at inducing differentiation, while the other analogs were less potent. None of the analogs were as potent as 1,25D in promoting in vivo intestinal calcium absorption or bone calcium mobilization. LA was the most potent of the analogs but required 20-30-fold higher doses than 1,25D. The 25-hydroxyl orientation combined with the 16,17-ene functionality of analog LA enhances its ability to interact with VDR and induce biological actions.


The Journal of Steroid Biochemistry and Molecular Biology | 2007

Conservative mutageneic perturbations of amino acids connecting helix 12 in the 1α,25(OH)2-D3 receptor (VDR) to the ligand cause significant transactivational effects

Craig M. Bula; June E. Bishop; Anthony W. Norman

The positioning of helix 12 activation domain of nuclear receptor proteins is critically important for gene regulation. Perturbations of the helix 12 by larger analogs may alter interactions with transcriptional machinery which might give rise to selectivity. To explore the topology of the ligand binding pocket and how the bound ligand conceivably gives rise to altered transcriptional efficiencies, we have targeted 4 hydrophobic residues which contact the 25-carbon of the ligand, 1alpha,25(OH)(2)-vitamin D(3), and made a series of 13 mutants. Substitution of a smaller hydrophobic residue was poorly tolerated compared to a larger one for transactivation. The larger amino acids are likely better tolerated by promoting stronger Van der Waals forces with the ligand. Valine-418 mutants demonstrated an extreme example of this observation with mutation to leucine being transactivationally unaffected with alanine being the most affected of all single mutants. V418L resulted in a 1.3-fold increase in EC(50) for 1,25-D mediated transactivation whereas V418A resulted in a 53-fold increase when compared to wildtype VDR. Importantly, this difference is not explained by ligand binding data but by differential VDR protease sensitivity implying that V418L-VDR mutation assumes a better conformational interaction surface for coactivator than V418A. Importantly, the V418 location may accommodate larger sidechains and may even enhance the interaction with specific nuclear coactivators.

Collaboration


Dive into the Craig M. Bula's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

June E. Bishop

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen L. Henry

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinde Song

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge