Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig M. Lee is active.

Publication


Featured researches published by Craig M. Lee.


Journal of Geophysical Research | 2006

The large‐scale freshwater cycle of the Arctic

Mark C. Serreze; Andrew P. Barrett; Andrew G. Slater; Rebecca A. Woodgate; Knut Aagaard; Richard B. Lammers; Michael Steele; Richard E. Moritz; Michael P. Meredith; Craig M. Lee

This paper synthesizes our understanding of the Arctics large-scale freshwater cycle. It combines terrestrial and oceanic observations with insights gained from the ERA-40 reanalysis and land surface and ice-ocean models. Annual mean freshwater input to the Arctic Ocean is dominated by river discharge (38%), inflow through Bering Strait (30%), and net precipitation (24%). Total freshwater export from the Arctic Ocean to the North Atlantic is dominated by transports through the Canadian Arctic Archipelago (35%) and via Fram Strait as liquid (26%) and sea ice (25%). All terms are computed relative to a reference salinity of 34.8. Compared to earlier estimates, our budget features larger import of freshwater through Bering Strait and larger liquid phase export through Fram Strait. While there is no reason to expect a steady state, error analysis indicates that the difference between annual mean oceanic inflows and outflows (∼8% of the total inflow) is indistinguishable from zero. Freshwater in the Arctic Ocean has a mean residence time of about a decade. This is understood in that annual freshwater input, while large (∼8500 km3), is an order of magnitude smaller than oceanic freshwater storage of ∼84,000 km3. Freshwater in the atmosphere, as water vapor, has a residence time of about a week. Seasonality in Arctic Ocean freshwater storage is nevertheless highly uncertain, reflecting both sparse hydrographic data and insufficient information on sea ice volume. Uncertainties mask seasonal storage changes forced by freshwater fluxes. Of flux terms with sufficient data for analysis, Fram Strait ice outflow shows the largest interannual variability.


Science | 2012

Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms

Amala Mahadevan; Eric A. D’Asaro; Craig M. Lee; Mary Jane Perry

Early Bloom Trigger Springtime phytoplankton blooms occur when high nutrient concentrations are combined with abundant sunlight and a stratified upper ocean layer. It has been thought that stratification occurs because in the spring, seasonal warming causes the water to expand, making it less dense, which creates a layer resistant to mixing from below. Now, Mahadevan et al. (p. 54; see the Perspective by Martin) have combined observations of the upper water column from the subpolar North Atlantic with ocean model simulations, which demonstrate that the initial stratification can be triggered by the dynamic effects of passing ocean eddies. These eddies can advance the time of the bloom by 20 to 30 days. Oceans eddies can trigger springtime plankton blooms previously attributed to surface heating. Springtime phytoplankton blooms photosynthetically fix carbon and export it from the surface ocean at globally important rates. These blooms are triggered by increased light exposure of the phytoplankton due to both seasonal light increase and the development of a near-surface vertical density gradient (stratification) that inhibits vertical mixing of the phytoplankton. Classically and in current climate models, that stratification is ascribed to a springtime warming of the sea surface. Here, using observations from the subpolar North Atlantic and a three-dimensional biophysical model, we show that the initial stratification and resulting bloom are instead caused by eddy-driven slumping of the basin-scale north-south density gradient, resulting in a patchy bloom beginning 20 to 30 days earlier than would occur by warming.


Journal of Atmospheric and Oceanic Technology | 2002

The Modular Ocean Data Assimilation System (MODAS)

D. N. Fox; William J. Teague; Charlie N. Barron; Michael R. Carnes; Craig M. Lee

The Modular Ocean Data Assimilation System (MODAS) is used by the U.S. Navy for depiction of three- dimensional fields of temperature and salinity over the global ocean. MODAS includes both a static climatology and a dynamic climatology. While the static climatology represents the historical averages, the dynamic cli- matology assimilates near-real-time observations of sea surface height and sea surface temperature and provides improved temperature and salinity fields. The methodology for the construction of the MODAS climatology is described here. MODAS is compared with Levitus and Generalized Digital Environmental Model climatologies and with temperature and salinity profiles measured by SeaSoar in the Japan/East Sea to illustrate MODAS capabilities. MODAS with assimilated remotely sensed data is able to portray time-varying dynamical features that cannot be represented by static climatologies.


Science | 2011

Enhanced Turbulence and Energy Dissipation at Ocean Fronts

Eric A. D'Asaro; Craig M. Lee; Luc Rainville; Ramsey R. Harcourt; Leif N. Thomas

Energy in surface ocean currents can dissipate into deep water via enhanced turbulence at the boundaries between water masses. The ocean surface boundary layer mediates air-sea exchange. In the classical paradigm and in current climate models, its turbulence is driven by atmospheric forcing. Observations at a 1-kilometer-wide front within the Kuroshio Current indicate that the rate of energy dissipation within the boundary layer is enhanced by one to two orders of magnitude, suggesting that the front, rather than the atmospheric forcing, supplied the energy for the turbulence. The data quantitatively support the hypothesis that winds aligned with the frontal velocity catalyzed a release of energy from the front to the turbulence. The resulting boundary layer is stratified in contrast to the classically well-mixed layer. These effects will be strongest at the intense fronts found in the Kuroshio Current, the Gulf Stream, and the Antarctic Circumpolar Current, all of which are key players in the climate system.


Journal of Climate | 2010

Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations

Michael A. Rawlins; Michael Steele; Marika M. Holland; Jennifer C. Adam; Jessica E. Cherry; Jennifer A. Francis; Pavel Ya. Groisman; Larry D. Hinzman; Thomas G. Huntington; Douglas L. Kane; John S. Kimball; R. Kwok; Richard B. Lammers; Craig M. Lee; Dennis P. Lettenmaier; Kyle C. McDonald; E. Podest; Jonathan W. Pundsack; Bert Rudels; Mark C. Serreze; Alexander I. Shiklomanov; Øystein Skagseth; Tara J. Troy; Charles J. Vörösmarty; Mark Wensnahan; Eric F. Wood; Rebecca A. Woodgate; Daqing Yang; Ke Zhang; Tingjun Zhang

Abstract Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lowe...


Journal of Physical Oceanography | 2005

Intensification of Ocean Fronts by Down-Front Winds

Leif N. Thomas; Craig M. Lee

Abstract Many ocean fronts experience strong local atmospheric forcing by down-front winds, that is, winds blowing in the direction of the frontal jet. An analytic theory and nonhydrostatic numerical simulations are used to demonstrate the mechanism by which down-front winds lead to frontogenesis. When a wind blows down a front, cross-front advection of density by Ekman flow results in a destabilizing wind-driven buoyancy flux (WDBF) equal to the product of the Ekman transport with the surface lateral buoyancy gradient. Destabilization of the water column results in convection that is localized to the front and that has a buoyancy flux that is scaled by the WDBF. Mixing of buoyancy by convection, and Ekman pumping/suction resulting from the cross-front contrast in vertical vorticity of the frontal jet, drive frontogenetic ageostrophic secondary circulations (ASCs). For mixed layers with negative potential vorticity, the most frontogenetic ASCs select a preferred cross-front width and do not translate with...


Journal of Physical Oceanography | 2014

Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate

Amy F. Waterhouse; Jennifer A. MacKinnon; Jonathan D. Nash; Matthew H. Alford; Eric Kunze; Harper L. Simmons; Kurt L. Polzin; Louis C. St. Laurent; Oliver M. T. Sun; Robert Pinkel; Lynne D. Talley; Caitlin B. Whalen; Tycho N. Huussen; Glenn S. Carter; Ilker Fer; Stephanie Waterman; Alberto C. Naveira Garabato; Thomas B. Sanford; Craig M. Lee

The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixingobtainedfrom(i)Thorpe-scaleoverturnsfrommooredprofilers,afinescaleparameterizationappliedto (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strainfromfull-depthloweredacousticDoppler currentprofilers (LADCP)andCTDprofiles. Verticalprofiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10 24 )m 2 s 21 and above 1000-m depth is O(10 25 )m 2 s 21 . The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variabilityin theratiobetweenlocal internalwavegeneration and local dissipation.Insomeregions,the depthintegrateddissipationrateiscomparabletotheestimatedpowerinputintothelocalinternalwavefield.Inafew cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However,atmostlocationsthetotalpowerlostthroughturbulentdissipationislessthantheinputintothelocal internal wave field. This suggests dissipation elsewhere, such as continental margins.


Journal of Physical Oceanography | 2006

Structure of the Baroclinic Tide Generated at Kaena Ridge, Hawaii

Jonathan D. Nash; Eric Kunze; Craig M. Lee; Thomas B. Sanford

Repeat transects of full-depth density and velocity are used to quantify generation and radiation of the semidiurnal internal tide from Kaena Ridge, Hawaii. A 20-km-long transect was sampled every 3 h using expendable current profilers and the absolute velocity profiler. Phase and amplitude of the baroclinic velocity, pressure, and vertical displacement were computed, as was the energy flux. Large barotropically induced isopycnal heaving and strong baroclinic energy-flux divergence are observed on the steep flanks of the ridge where upward and downward beams radiate off ridge. Directly above Kaena Ridge, strong kinetic energy density and weak net energy flux are argued to be a horizontally standing wave. The phasing of velocity and vertical displacements is consistent with this interpretation. Results compare favorably with the Merrifield and Holloway model.


Science | 2015

Eddy-driven subduction exports particulate organic carbon from the spring bloom

Melissa M. Omand; Eric A. D’Asaro; Craig M. Lee; Mary Jane Perry; Nathan Briggs; Ivona Cetinić; Amala Mahadevan

Down with atmospheric carbon dioxide How does the ocean move carbon from surface waters to its deep interior? Current understanding is that carbon dioxide is removed from the atmosphere by phytoplankton that are eaten, and in turn their predators die and sink into deep water and seafloor sediments. In addition to this route, Omand et al. show that downwelling caused by ocean eddies 1 to 10 km across can deliver much of the carbon produced in spring to the deep sea. The eddies entrain small particles and dissolved organic carbon to augment the flux of large sinking particles. Science, this issue p. 222 Ocean eddies can transport appreciable quantities of organic carbon from the surface to depth. The export of particulate organic carbon (POC) from the surface ocean to depth is traditionally ascribed to sinking. Here, we show that a dynamic eddying flow field subducts surface water with high concentrations of nonsinking POC. Autonomous observations made by gliders during the North Atlantic spring bloom reveal anomalous features at depths of 100 to 350 meters with elevated POC, chlorophyll, oxygen, and temperature-salinity characteristics of surface water. High-resolution modeling reveals that during the spring transition, intrusions of POC-rich surface water descend as coherent, 1- to 10-kilometer–scale filamentous features, often along the perimeter of eddies. Such a submesoscale eddy-driven flux of POC is unresolved in global carbon cycle models but can contribute as much as half of the total springtime export of POC from the highly productive subpolar oceans.


Journal of Physical Oceanography | 2006

Internal Tides and Turbulence along the 3000-m Isobath of the Hawaiian Ridge

Craig M. Lee; Eric Kunze; Thomas B. Sanford; Jonathan D. Nash; Mark A. Merrifield; Peter E. Holloway; British Columbia

Full-depth velocity and density profiles taken along the 3000-m isobath characterize the semidiurnal internal tide and bottom-intensified turbulence along the Hawaiian Ridge. Observations reveal baroclinic energy fluxes of 21 5k W m 1 radiating from French Frigate Shoals, 17 2.5 kW m 1 from Kauai Channel west of Oahu, and 13 3.5 kW m 1 from west of Nihoa Island. Weaker fluxes of 1–4 2k W m 1 radiate from the region near Necker Island and east of Nihoa Island. Observed off-ridge energy fluxes generally agree to within a factor of 2 with those produced by a tidally forced numerical model. Average turbulent diapycnal diffusivity K is (0.5–1) 10 4 m 2 s –1 above 2000 m, increasing exponentially to 20 10 4 m 2 s –1 near the bottom. Microstructure values agree well with those inferred from a finescale internal wave-based parameterization. A linear relationship between the vertically integrated energy flux and vertically integrated turbulent dissipation rate implies that dissipative length scales for the radiating internal tide exceed 1000 km.

Collaboration


Dive into the Craig M. Lee's collaboration.

Top Co-Authors

Avatar

Luc Rainville

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Beth Curry

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jason I. Gobat

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel L. Rudnick

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge