Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig Meyers is active.

Publication


Featured researches published by Craig Meyers.


Brain Research | 1997

3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat α7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner

Edwin M. Meyer; Ee Tein Tay; Roger L. Papke; Craig Meyers; Guang-ling Huang; Christopher M. de Fiebre

The alpha7 nicotinic receptor agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB; GTS-21) was investigated for its ability to: (1) activate a variety of nicotinic receptor subtypes in Xenopus oocytes; (2) improve passive avoidance and spatial Morris water task performances in mecamylamine-sensitive manners in bilaterally nucleus basalis lesioned rats; and (3) elevate high-affinity [3H]acetylcholine (ACh) and high-affinity alpha-[125I]bungarotoxin binding in rat neocortex following 2 weeks of daily injections. DMXB (100 microM) activated alpha7 homo-oligomeric receptors, without significant activity at alpha2-, alpha3- and alpha4-containing subtypes. Mecamylamine blocked rat alpha7 receptors weakly if co-administered with agonist, but much more potently when pre-applied. Bilateral ibotenic acid lesions of the nucleus basalis interfered with passive avoidance and spatial memory-related behaviors. DMXB (0.5 mg/kg, i.p.) improved passive avoidance behavior in lesioned animals in a mecamylamine-sensitive manner. DMXB (0.5 mg/kg 15 min before each session) also improved performance in the training and probe components of the Morris water task. DMXB-induced improvement in the probe component but not the training phase was mecamylamine-sensitive. [3H]ACh binding was elevated after 14 days of daily i.p. injections with 0.2 mg/kg nicotine but not after 1 mg/kg DMXB. Neither drug elevated high-affinity alpha-[125I]bungarorotoxin binding over this interval.


Molecular Therapy | 2010

In Vivo RNAi-Mediated α-Synuclein Silencing Induces Nigrostriatal Degeneration

Oleg Gorbatyuk; Shoudong Li; Kevin Nash; Marina S. Gorbatyuk; Alfred S. Lewin; Layla F Sullivan; Ronald J. Mandel; Weijun Chen; Craig Meyers; Fredric P. Manfredsson; Nicholas Muzyczka

Two small-interfering RNAs (siRNAs) targeting α-synuclein (α-syn) and three control siRNAs were cloned in an adeno-associated virus (AAV) vector and unilaterally injected into rat substantia nigra pars compacta (SNc). Reduction of α-syn resulted in a rapid (4 week) reduction in the number of tyrosine hydroxylase (TH) positive cells and striatal dopamine (DA) on the injected side. The level of neurodegeneration induced by the different siRNAs correlated with their ability to downregulate α-syn protein and mRNA in tissue culture and in vivo. Examination of various SNc neuronal markers indicated that neurodegeneration was due to cell loss and not just downregulation of DA synthesis. Reduction of α-syn also resulted in a pronounced amphetamine induced behavioral asymmetry consistent with the level of neurodegeneration. In contrast, none of the three control siRNAs, which targeted genes not normally expressed in SNc, showed evidence of neurodegeneration or behavioral asymmetry, even at longer survival times. Moreover, co-expression of both rat α-syn and α-syn siRNA partially reversed the neurodegenerative and behavioral effects of α-syn siRNA alone. Our data show that α-syn plays an important role in the rat SNc and suggest that both up- and downregulation of wild-type α-syn expression increase the risk of nigrostriatal pathology.Two small-interfering RNAs (siRNAs) targeting alpha-synuclein (alpha-syn) and three control siRNAs were cloned in an adeno-associated virus (AAV) vector and unilaterally injected into rat substantia nigra pars compacta (SNc). Reduction of alpha-syn resulted in a rapid (4 week) reduction in the number of tyrosine hydroxylase (TH) positive cells and striatal dopamine (DA) on the injected side. The level of neurodegeneration induced by the different siRNAs correlated with their ability to downregulate alpha-syn protein and mRNA in tissue culture and in vivo. Examination of various SNc neuronal markers indicated that neurodegeneration was due to cell loss and not just downregulation of DA synthesis. Reduction of alpha-syn also resulted in a pronounced amphetamine induced behavioral asymmetry consistent with the level of neurodegeneration. In contrast, none of the three control siRNAs, which targeted genes not normally expressed in SNc, showed evidence of neurodegeneration or behavioral asymmetry, even at longer survival times. Moreover, co-expression of both rat alpha-syn and alpha-syn siRNA partially reversed the neurodegenerative and behavioral effects of alpha-syn siRNA alone. Our data show that alpha-syn plays an important role in the rat SNc and suggest that both up- and downregulation of wild-type alpha-syn expression increase the risk of nigrostriatal pathology.


Molecular Therapy | 2012

Glucose regulated protein 78 diminishes α-synuclein neurotoxicity in a rat model of Parkinson disease.

Marina S. Gorbatyuk; Arseniy Shabashvili; Weijun Chen; Craig Meyers; Layla F Sullivan; Max Salganik; Jonathan H. Lin; Alfred S. Lewin; Nicholas Muzyczka; Oleg Gorbatyuk

Accumulation of human wild-type (wt) α-synuclein (α-syn) induces neurodegeneration in humans and in experimental rodent models of Parkinson disease (PD). It also leads to endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). We overexpressed glucose regulated protein 78, also known as BiP (GRP78/BiP), to test the hypothesis that this ER chaperone modulates the UPR, blocks apoptosis, and promotes the survival of nigral dopamine (DA) neurons in a rat model of PD induced by elevated level of human α-syn. We determined that α-syn activates ER stress mediators associated with pancreatic ER kinase-like ER kinase (PERK) and activating transcription factor-6 (ATF6) signaling pathways as well as proaoptotic CCAAT/-enhancer-binding protein homologous protein (CHOP) in nigral DA neurons. At the same time, overexpression of GRP78/BiP diminished α-syn neurotoxicity by down regulating ER stress mediators and the level of apoptosis, promoted survival of nigral tyrosine hydroxylase (TH) positive cells and resulted in higher levels of striatal DA, while eliminating amphetamine induced behavioral asymmetry. We also detected a complex between GRP78/BiP and α-syn that may contribute to prevention of the neurotoxicity caused by α-syn. Our data suggest that the molecular chaperone GRP78/BiP plays a neuroprotective role in α-syn-induced Parkinson-like neurodegeneration.


Brain Research | 2000

NGF gene transfer to intrinsic basal forebrain neurons increases cholinergic cell size and protects from age-related, spatial memory deficits in middle-aged rats.

Ronald L. Klein; Aaron C. Hirko; Craig Meyers; Jeremy R. Grimes; Nicholas Muzyczka; Edwin M. Meyer

Administration of nerve growth factor (NGF) by intracerebroventricular infusion or transplantation of NGF-secreting cells to the basal forebrain improves spatial memory in aged animals. Using the adeno-associated virus (AAV) vector system, basal forebrain neurons were transduced to produce NGF ectopically for long intervals (at least 9 months). Rats received intraseptal injections of either the control vector, pTR-UF4, or the pTR-NGFmyc at 3 months of age, prior to testing their performance in the Morris water task. An age-related decrease in the acquisition of the hidden platform location was found at 12 months of age in the pTR-UF4 control group, but not in the pTR-NGFmyc group. Further, when compared to 3 month old untreated animals, the control group, but not the pTR-NGFmyc group, was impaired at 12 months of age. Concomitant to preventing age-related memory deficits, the NGF gene transfer increased cholinergic neuron size by 34% in the medial septum. This approach may therefore represent a viable therapy for age-related dementia involving dysfunction in cholinergic activity and memory, such as Alzheimers disease.


Brain Research | 1998

Neuroprotective effects of 2,4-dimethoxybenzylidene anabaseine (DMXB) and tetrahydroaminoacridine (THA) in neocortices of nucleus basalis lesioned rats

Edwin M. Meyer; Michael A. King; Craig Meyers

The nicotinic alpha7 agonist dimethoxybenzilidene anabaseine (DMXB) and cholinesterase inhibitor tetrahydroaminoacridine (THA) were investigated in a trans-synaptic model for neocortical atrophy and degeneration following nucleus basalis lesions. Bilateral lesions reduced parietal neuronal density in layers II-V 8 months later. DMXB administered i.p. daily to rats for 3 months attenuated this loss in layers II-V at a 1 mg/kg i.p. dose. A lower, 0.2 mg/kg i.p. dose, was neuroprotective in layer IV only. THA (1 mg/kg i.p.) also protected against neocortical Nissl-staining deficits.


Molecular Therapy | 2008

Adeno-associated Viral (AAV) Serotype 5 Vector Mediated Gene Delivery of Endothelin-converting Enzyme Reduces Aβ Deposits in APP + PS1 Transgenic Mice

Niki C Carty; Kevin Nash; Daniel C. Lee; Mary Mercer; Paul E. Gottschall; Craig Meyers; Nicholas Muzyczka; Marcia N. Gordon; Dave Morgan

Reduction of Aβ deposition is a major therapeutic strategy in Alzheimers disease (AD). The concentration of Aβ in the brain is modulated not only by Aβ production but also by its degradation. One of the proteases involved in the degradation of Aβ peptides is endothelin-converting enzyme (ECE). In this study, we investigated the effects of an intracranial administration of a seroptype 5 recombinant adeno-associated viral vector (rAAV) containing the ECE-1 synthetic gene on amyloid deposition in amyloid precursor protein (APP) plus presenilin-1 (PS1) transgenic mice. The rAAV vector was injected unilaterally into the right anterior cortex and hippocampus of 6-month-old mice, while control mice received an AAV vector expressing green fluorescent protein (GFP). Immunohistochemical testing for the hemagglutinin (HA) tag appended to ECE revealed strong expression in areas surrounding the injection sites but minimal expression in the contralateral regions. Immunohistochemical tests showed that Aβ decreases in the anterior cortex and hippocampus in mice receiving the ECE synthetic gene. Further, decreases in Congo red positive deposits were also observed in both regions. These results indicate that increasing the expression of β-amyloid degrading enzymes through gene therapy is a promising approach to the treatment of AD.Reduction of Abeta deposition is a major therapeutic strategy in Alzheimers disease (AD). The concentration of Abeta in the brain is modulated not only by Abeta production but also by its degradation. One of the proteases involved in the degradation of Abeta peptides is endothelin-converting enzyme (ECE). In this study, we investigated the effects of an intracranial administration of a seroptype 5 recombinant adeno-associated viral vector (rAAV) containing the ECE-1 synthetic gene on amyloid deposition in amyloid precursor protein (APP) plus presenilin-1 (PS1) transgenic mice. The rAAV vector was injected unilaterally into the right anterior cortex and hippocampus of 6-month-old mice, while control mice received an AAV vector expressing green fluorescent protein (GFP). Immunohistochemical testing for the hemagglutinin (HA) tag appended to ECE revealed strong expression in areas surrounding the injection sites but minimal expression in the contralateral regions. Immunohistochemical tests showed that Abeta decreases in the anterior cortex and hippocampus in mice receiving the ECE synthetic gene. Further, decreases in Congo red positive deposits were also observed in both regions. These results indicate that increasing the expression of beta-amyloid degrading enzymes through gene therapy is a promising approach to the treatment of AD.


Neuroscience | 2007

The α7 nicotinic receptor agonist 4OH-GTS-21 protects axotomized septohippocampal cholinergic neurons in wild type but not amyloid-overexpressing transgenic mice

Ke Ren; Michael A. King; J. Liu; J. Siemann; M. Altman; Craig Meyers; Jeffery A Hughes; Edwin M. Meyer

While activation of alpha7 nicotinic receptors protects neurons from a variety of apoptotic insults in vitro, little is known about this neuroprotective action in vivo, especially under amyloidogenic conditions that mimic Alzheimers disease. We therefore investigated the effects of 4OH-GTS-21, a selective partial agonist for these receptors, on septohippocampal cholinergic and GABAergic neuron survival following fimbria fornix (FFX) lesions in three strains of mice: C57BL/6J wild type mice; human presenilin-1 mutant M146L (PS1) transgenic mice; and mice expressing both mutant PS1 and Swedish mutant K670N/M671L amyloid precursor protein (APP). Initial studies to demonstrated that 4OH-GTS-21 is likely brain permeant based on its ability to improve passive avoidance and Morris water task behaviors in nucleus basalis-lesioned rats. In FFX-lesioned mice, twice per day i.p. injections of 1 mg/kg of 4OH-GTS-21 for 2 weeks promoted the survival and prevented the atrophy of septal cholinergic neurons. Septal parvalbumin-staining GABAergic neurons were not protected by this treatment, although they also express alpha7 nicotinic receptors, suggesting an indirect, nerve growth factor (NGF)-mediated mechanism. No protection of cholinergic neurons was observed in similarly treated PS1 or APP/PS1 transgenic mice. 4OH-GTS-21 treatment actually reduced cholinergic neuronal size in APP/PS1 mice. Hippocampal amyloid deposition was not affected by FFX lesions or treatment with this alpha7 nicotinic receptor agonist in APP/PS1 mice under these conditions. These results indicate that brain alpha7 nicotinic receptors are potential targets for protecting at-risk brain neurons in Alzheimers disease, perhaps via their effects on NGF receptors; however, this protection may be sensitive under some conditions to environmental factors such as inhibitory amyloid-peptides.


Molecular Therapy | 2010

α-Synuclein expression in rat substantia nigra suppresses phospholipase D2 toxicity and nigral neurodegeneration.

Oleg Gorbatyuk; Shoudong Li; Frederic N. Nguyen; Fredric P. Manfredsson; Galina Kondrikova; Layla F Sullivan; Craig Meyers; Weijun Chen; Ronald J. Mandel; Nicholas Muzyczka

We present genetic evidence that an in vivo role of α-synuclein (α-syn) is to inhibit phospholipase D2 (PLD2), an enzyme that is believed to participate in vesicle trafficking, membrane signaling, and both endo- and exocytosis. Overexpression of PLD2 in rat substantia nigra pars compacta (SNc) caused severe neurodegeneration of dopamine (DA) neurons, loss of striatal DA, and an associated ipsilateral amphetamine-induced rotational asymmetry. Coexpression of human wild type α-syn suppressed PLD2 neurodegeneration, DA loss, and amphetamine-induced rotational asymmetry. However, an α-syn mutant defective for inhibition of PLD2 in vitro also failed to inhibit PLD toxicity in vivo. Further, reduction of PLD2 activity in SNc, either by siRNA knockdown of PLD2 or overexpression of α-syn, both produced an unusual contralateral amphetamine-induced rotational asymmetry, opposite to that seen with overexpression of PLD2, suggesting that PLD2 and α-syn were both involved in DA release or reuptake. Finally, α-syn coimmunoprecipitated with PLD2 from extracts prepared from striatal tissues. Taken together, our data demonstrate that α-syn is an inhibitor of PLD2 in vivo, and confirm earlier reports that α-syn inhibits PLD2 in vitro. Our data also demonstrate that it is possible to use viral-mediated gene transfer to study gene interactions in vivo.


Neurobiology of Aging | 2015

The loss of glucose-regulated protein 78 (GRP78) during normal aging or from siRNA knockdown augments human alpha-synuclein (α-syn) toxicity to rat nigral neurons

Maxim Salganik; Valeriy G. Sergeyev; Vishal Shinde; Craig Meyers; Marina S. Gorbatyuk; Jonathan H. Lin; Sergey Zolotukhin; Oleg Gorbatyuk

Age-related structural changes and gradual loss of key enzymes significantly affect the ability of the endoplasmic reticulum (ER) to facilitate proper protein folding and maintain homeostasis. In this work, we present several lines of evidence supporting the hypothesis that the age-related decline in expression of the ER chaperone glucose-regulated protein 78 (GRP78) could be related to the development of Parkinsons disease. We first determined that old (24 months) rats exhibit significantly lower levels of GRP78 protein in the nigrostriatal system as compared with young (2 months) animals. Then using recombinant adeno-associate virus-mediated gene transfer, we found that GRP78 downregulation by specific small interfering RNAs (siRNAs) aggravates alpha-synuclein (α-syn) neurotoxicity in nigral dopamine (DA) neurons. Moreover, the degree of chaperone decline corresponds with the severity of neurodegeneration. Additionally, comparative analysis of nigral tissues obtained from old and young rats revealed that aging affects the capacity of nigral DA cells to upregulate endogenous GRP78 protein in response to human α-syn neurotoxicity. Finally, we demonstrated that a sustained increase of GRP78 protein over the course of 9 months protected aging nigral DA neurons in the α-syn-induced rat model of Parkinsons-like neurodegeneration. Our data indicate that the ER chaperone GRP78 may have therapeutic potential for preventing and/or slowing age-related neurodegeneration.


PLOS ONE | 2011

Ab-Externo AAV-Mediated Gene Delivery to the Suprachoroidal Space Using a 250 Micron Flexible Microcatheter

Marc C. Peden; Jeff Min; Craig Meyers; Zachary L. Lukowski; Qiuhong Li; Sanford L. Boye; Monica A. Levine; William W. Hauswirth; R. Ratnakaram; William O. Dawson; Wesley C. Smith; Mark B. Sherwood

Background The current method of delivering gene replacement to the posterior segment of the eye involves a three-port pars plana vitrectomy followed by injection of the agent through a 37-gauge cannula, which is potentially wrought with retinal complications. In this paper we investigate the safety and efficacy of delivering adeno-associated viral (AAV) vector to the suprachoroidal space using an ab externo approach that utilizes an illuminated microcatheter. Methods 6 New Zealand White rabbits and 2 Dutch Belted rabbits were used to evaluate the ab externo delivery method. sc-AAV5-smCBA-hGFP vector was delivered into the suprachoroidal space using an illuminated iTrackTM 250A microcatheter. Six weeks after surgery, the rabbits were sacrificed and their eyes evaluated for AAV transfection using immunofluorescent antibody staining of GFP. Results Immunostaining of sectioned and whole-mounted eyes demonstrated robust transfection in all treated eyes, with no fluorescence in untreated control eyes. Transfection occurred diffusely and involved both the choroid and the retina. No apparent adverse effects caused by either the viral vector or the procedure itself could be seen either clinically or histologically. Conclusions The ab externo method of delivery using a microcatheter was successful in safely and effectively delivering a gene therapy agent to the suprachoroidal space. This method presents a less invasive alternative to the current method of virally vectored gene delivery.

Collaboration


Dive into the Craig Meyers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Wu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Min

University of Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge