Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig P. Giacomini is active.

Publication


Featured researches published by Craig P. Giacomini.


Cancer Research | 2007

Genomic Profiling Reveals Alternative Genetic Pathways of Prostate Tumorigenesis

Jacques Lapointe; Chunde Li; Craig P. Giacomini; Keyan Salari; Stephanie Huang; Pei Wang; Michelle Ferrari; Tina Hernandez-Boussard; James D. Brooks; Jonathan R. Pollack

Prostate cancer is clinically heterogeneous, ranging from indolent to lethal disease. Expression profiling previously defined three subtypes of prostate cancer, one (subtype-1) linked to clinically favorable behavior, and the others (subtypes-2 and -3) linked with a more aggressive form of the disease. To explore disease heterogeneity at the genomic level, we carried out array-based comparative genomic hybridization (array CGH) on 64 prostate tumor specimens, including 55 primary tumors and 9 pelvic lymph node metastases. Unsupervised cluster analysis of DNA copy number alterations (CNA) identified recurrent aberrations, including a 6q15-deletion group associated with subtype-1 gene expression patterns and decreased tumor recurrence. Supervised analysis further disclosed distinct patterns of CNA among gene-expression subtypes, where subtype-1 tumors exhibited characteristic deletions at 5q21 and 6q15, and subtype-2 cases harbored deletions at 8p21 (NKX3-1) and 21q22 (resulting in TMPRSS2-ERG fusion). Lymph node metastases, predominantly subtype-3, displayed overall higher frequencies of CNA, and in particular gains at 8q24 (MYC) and 16p13, and loss at 10q23 (PTEN) and 16q23. Our findings reveal that prostate cancers develop via a limited number of alternative preferred genetic pathways. The resultant molecular genetic subtypes provide a new framework for investigating prostate cancer biology and explain in part the clinical heterogeneity of the disease.


Genome Biology | 2012

Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers

Alayne L Brunner; Andrew H. Beck; Badreddin Edris; Robert T. Sweeney; Shirley Zhu; Rui Li; Kelli Montgomery; Sushama Varma; Thea Gilks; Xiangqian Guo; Joseph W. Foley; Daniela M. Witten; Craig P. Giacomini; Ryan A. Flynn; Jonathan R. Pollack; Robert Tibshirani; Howard Y. Chang; Matt van de Rijn; Robert B. West

BackgroundMolecular characterization of tumors has been critical for identifying important genes in cancer biology and for improving tumor classification and diagnosis. Long non-coding RNAs, as a new, relatively unstudied class of transcripts, provide a rich opportunity to identify both functional drivers and cancer-type-specific biomarkers. However, despite the potential importance of long non-coding RNAs to the cancer field, no comprehensive survey of long non-coding RNA expression across various cancers has been reported.ResultsWe performed a sequencing-based transcriptional survey of both known long non-coding RNAs and novel intergenic transcripts across a panel of 64 archival tumor samples comprising 17 diagnostic subtypes of adenocarcinomas, squamous cell carcinomas and sarcomas. We identified hundreds of transcripts from among the known 1,065 long non-coding RNAs surveyed that showed variability in transcript levels between the tumor types and are therefore potential biomarker candidates. We discovered 1,071 novel intergenic transcribed regions and demonstrate that these show similar patterns of variability between tumor types. We found that many of these differentially expressed cancer transcripts are also expressed in normal tissues. One such novel transcript specifically expressed in breast tissue was further evaluated using RNA in situ hybridization on a panel of breast tumors. It was shown to correlate with low tumor grade and estrogen receptor expression, thereby representing a potentially important new breast cancer biomarker.ConclusionsThis study provides the first large survey of long non-coding RNA expression within a panel of solid cancers and also identifies a number of novel transcribed regions differentially expressed across distinct cancer types that represent candidate biomarkers for future research.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer

A. Hunter Shain; Craig P. Giacomini; Karen Matsukuma; Collins Karikari; Murali D. Bashyam; Manuel Hidalgo; Anirban Maitra; Jonathan R. Pollack

Defining the molecular genetic alterations underlying pancreatic cancer may provide unique therapeutic insight for this deadly disease. Toward this goal, we report here an integrative DNA microarray and sequencing-based analysis of pancreatic cancer genomes. Notable among the alterations newly identified, genomic deletions, mutations, and rearrangements recurrently targeted genes encoding components of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex, including all three putative DNA binding subunits (ARID1A, ARID1B, and PBRM1) and both enzymatic subunits (SMARCA2 and SMARCA4). Whereas alterations of each individual SWI/SNF subunit occurred at modest-frequency, as mutational “hills” in the genomic landscape, together they affected at least one-third of all pancreatic cancers, defining SWI/SNF as a major mutational “mountain.” Consistent with a tumor-suppressive role, re-expression of SMARCA4 in SMARCA4-deficient pancreatic cancer cell lines reduced cell growth and promoted senescence, whereas its overexpression in a SWI/SNF-intact line had no such effect. In addition, expression profiling analyses revealed that SWI/SNF likely antagonizes Polycomb repressive complex 2, implicating this as one possible mechanism of tumor suppression. Our findings reveal SWI/SNF to be a central tumor suppressive complex in pancreatic cancer.


Oncogene | 2006

Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification

Young Hyo Kim; Luc Girard; Craig P. Giacomini; Pei Wang; Tina Hernandez-Boussard; Robert Tibshirani; John D. Minna; Jonathan R. Pollack

DNA amplifications and deletions frequently contribute to the development and progression of lung cancer. To identify such novel alterations in small cell lung cancer (SCLC), we performed comparative genomic hybridization on a set of 24 SCLC cell lines, using cDNA microarrays representing ∼22 000 human genes (providing an average mapping resolution of <70 kb). We identified localized DNA amplifications corresponding to oncogenes known to be amplified in SCLC, including MYC (8q24), MYCN (2p24) and MYCL1 (1p34). Additional highly localized DNA amplifications suggested candidate oncogenes not previously identified as amplified in SCLC, including the antiapoptotic genes TNFRSF4 (1p36), DAD1 (14q11), BCL2L1 (20q11) and BCL2L2 (14q11). Likewise, newly discovered PCR-validated homozygous deletions suggested candidate tumor-suppressor genes, including the proapoptotic genes MAPK10 (4q21) and TNFRSF6 (10q23). To characterize the effect of DNA amplification on gene expression patterns, we performed expression profiling using the same microarray platform. Among our findings, we identified sets of genes whose expression correlated with MYC, MYCN or MYCL1 amplification, with surprisingly little overlap among gene sets. While both MYC and MYCN amplification were associated with increased and decreased expression of known MYC upregulated and downregulated targets, respectively, MYCL1 amplification was associated only with the latter. Our findings support a role of altered apoptotic balance in the pathogenesis of SCLC, and suggest that MYC family genes might affect oncogenesis through distinct sets of targets, in particular implicating the importance of transcriptional repression.


PLOS Genetics | 2008

Genomic Profiling Identifies GATA6 as a Candidate Oncogene Amplified in Pancreatobiliary Cancer

Kevin A. Kwei; Murali D. Bashyam; Jessica Kao; Raman Ratheesh; Edumakanti C. Reddy; Young Hyo Kim; Kelli Montgomery; Craig P. Giacomini; Yoon La Choi; Sreejata Chatterjee; Collins Karikari; Keyan Salari; Pei Wang; Tina Hernandez-Boussard; Gowrishankar Swarnalata; Matt van de Rijn; Anirban Maitra; Jonathan R. Pollack

Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46%) primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.


Cancer Research | 2005

A Gene Expression Signature of Genetic Instability in Colon Cancer

Craig P. Giacomini; Suet Yi Leung; Xin Chen; Siu Tsan Yuen; Young Hyo Kim; Eric Bair; Jonathan R. Pollack

Genetic instability plays a central role in the development and progression of human cancer. Two major classes of genetic instability, microsatellite instability (MSI) and chromosome instability (microsatellite stable; MSS), are best understood in the context of colon cancer, where MSI tumors represent approximately 15% of cases, and compared with MSS tumors, more often arise in the proximal colon and display favorable clinical outcome. To further explore molecular differences, we profiled gene expression in a set of 18 colon cancer cell lines using cDNA microarrays representing approximately 21,000 different genes. Supervised analysis identified a robust expression signature distinguishing MSI and MSS samples. As few as eight genes predicted with high accuracy the underlying genetic instability in the original and in three independent sample sets, comprising 13 colon cancer cell lines, 61 colorectal tumors, and 87 gastric tumors. Notably, the MSI signature was retained despite genetically correcting the underlying instability, suggesting the signature reflects a legacy of the tumor having arisen from MSI, rather than sensing the ongoing state of MSI. Our findings support a model in which MSI and MSS preferentially target different genes and pathways in cancer. Further, among the MSI signature genes, our findings implicate a role of elevated metallothionein expression in the clinical behavior of MSI cancers.


Oncogene | 2013

EGFRvIII gene rearrangement is an early event in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms.

C A Del Vecchio; Craig P. Giacomini; Hannes Vogel; Kristin C. Jensen; Tullio Florio; Adrian Merlo; Jonathan R. Pollack; Albert J. Wong

Amplification and rearrangements of the epidermal growth factor receptor (EGFR) gene are frequently found in glioblastoma multiforme (GBM). The most common variant is EGFR variant III (EGFRvIII). Research suggests that EGFRvIII could be a marker for a cancer stem cell or tumor-initiating population. If amplification and rearrangement are early events in tumorigenesis, this implies that they should be preserved throughout the tumor. However, in primary GBM, EGFRvIII expression is focal and sporadic. Unexpectedly, we found EGFR amplification and rearrangement throughout the tumor, including regions with no EGFRvIII expression, suggesting that mechanisms exist to modulate EGFRvIII expression even in the presence of high gene amplification. To study this phenomenon, we characterized three GBM cell lines with endogenous EGFRvIII. EGFRvIII expression was heterogeneous, with both positive and negative populations maintaining the genetic alterations, akin to primary tumors. Furthermore, EGFRvIII defined a hierarchy where EGFRvIII-positive cells gave rise to additional positive and negative cells. Only cells that had recently lost EGFRvIII expression could re-express EGFRvIII, providing an important buffer for maintaining EGFRvIII-positive cell numbers. Epigenetic mechanisms had a role in maintaining heterogeneous EGFRvIII expression. Demethylation induced a 20–60% increase in the percentage of EGFRvIII-positive cells, indicating that some cells could re-express EGFRvIII. Surprisingly, inhibition of histone deacetylation resulted in a 50–80% reduction in EGFRvIII expression. Collectively, this data demonstrates that EGFR amplification and rearrangement are early events in tumorigenesis and EGFRvIII follows a model of hierarchical expression. Furthermore, EGFRvIII expression is restricted by epigenetic mechanisms, suggesting that drugs that modulate the epigenome might be used successfully in glioblastoma tumors.


PLOS Genetics | 2013

Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types.

Craig P. Giacomini; Steven Sun; Sushama Varma; A. Hunter Shain; Marilyn M. Giacomini; Jay Balagtas; Robert T. Sweeney; Everett Lai; Catherine A. Del Vecchio; Andrew D. Forster; Nicole Clarke; Kelli Montgomery; Shirley Zhu; Albert J. Wong; Matt van de Rijn; Robert B. West; Jonathan R. Pollack

Gene fusions, like BCR/ABL1 in chronic myelogenous leukemia, have long been recognized in hematologic and mesenchymal malignancies. The recent finding of gene fusions in prostate and lung cancers has motivated the search for pathogenic gene fusions in other malignancies. Here, we developed a “breakpoint analysis” pipeline to discover candidate gene fusions by tell-tale transcript level or genomic DNA copy number transitions occurring within genes. Mining data from 974 diverse cancer samples, we identified 198 candidate fusions involving annotated cancer genes. From these, we validated and further characterized novel gene fusions involving ROS1 tyrosine kinase in angiosarcoma (CEP85L/ROS1), SLC1A2 glutamate transporter in colon cancer (APIP/SLC1A2), RAF1 kinase in pancreatic cancer (ATG7/RAF1) and anaplastic astrocytoma (BCL6/RAF1), EWSR1 in melanoma (EWSR1/CREM), CDK6 kinase in T-cell acute lymphoblastic leukemia (FAM133B/CDK6), and CLTC in breast cancer (CLTC/VMP1). Notably, while these fusions involved known cancer genes, all occurred with novel fusion partners and in previously unreported cancer types. Moreover, several constituted druggable targets (including kinases), with therapeutic implications for their respective malignancies. Lastly, breakpoint analysis identified new cell line models for known rearrangements, including EGFRvIII and FIP1L1/PDGFRA. Taken together, we provide a robust approach for gene fusion discovery, and our results highlight a more widespread role of fusion genes in cancer pathogenesis.


Cancer Research | 2012

Epidermal Growth Factor Receptor Variant III Contributes to Cancer Stem Cell Phenotypes in Invasive Breast Carcinoma

Catherine A. Del Vecchio; Kristin C. Jensen; Ryan T. Nitta; A. Hunter Shain; Craig P. Giacomini; Albert J. Wong

EGFRvIII is a tumor-specific variant of the epidermal growth factor receptor (EGFR). Although EGFRvIII is most commonly found in glioblastoma, its expression in other tumor types remains controversial. In this study, we investigated EGFRvIII expression and amplification in primary breast carcinoma. Our analyses confirmed the presence of EGFRvIII, but in the absence of amplification or rearrangement of the EGFR locus. Nested reverse transcriptase PCR and flow cytometry were used to detect a higher percentage of positive cases. EGFRvIII-positive cells showed increased expression of genes associated with self-renewal and epithelial-mesenchymal transition along with a higher percentage of stem-like cells. EGFRvIII also increased in vitro sphere formation and in vivo tumor formation. Mechanistically, EGFRvIII mediated its effects through the Wnt/β-catenin pathway, leading to increased β-catenin target gene expression. Inhibition of this pathway reversed the observed effects on cancer stem cell (CSC) phenotypes. Together, our findings show that EGFRvIII is expressed in primary breast tumors and contributes to CSC phenotypes in breast cancer cell lines through the Wnt pathway. These data suggest a novel function for EGFRvIII in breast tumorigenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2012

CDX2 is an amplified lineage-survival oncogene in colorectal cancer

Keyan Salari; Mary E. Spulak; Justin Cuff; Andrew D. Forster; Craig P. Giacomini; Stephanie Huang; Melissa E. Ko; Albert Y. Lin; Matt van de Rijn; Jonathan R. Pollack

The mutational activation of oncogenes drives cancer development and progression. Classic oncogenes, such as MYC and RAS, are active across many different cancer types. In contrast, “lineage-survival” oncogenes represent a distinct and emerging class typically comprising transcriptional regulators of a specific cell lineage that, when deregulated, support the proliferation and survival of cancers derived from that lineage. Here, in a large collection of colorectal cancer cell lines and tumors, we identify recurrent amplification of chromosome 13, an alteration highly restricted to colorectal-derived cancers. A minimal region of amplification on 13q12.2 pinpoints caudal type homeobox transcription factor 2 (CDX2), a regulator of normal intestinal lineage development and differentiation, as a target of the amplification. In contrast to its described role as a colorectal tumor suppressor, CDX2 when amplified is required for the proliferation and survival of colorectal cancer cells. Further, transcriptional profiling, binding-site analysis, and functional studies link CDX2 to Wnt/β-catenin signaling, itself a key oncogenic pathway in colorectal cancer. These data characterize CDX2 as a lineage-survival oncogene deregulated in colorectal cancer. Our findings challenge a prevailing view that CDX2 is a tumor suppressor in colorectal cancer and uncover an additional piece in the multistep model of colorectal tumorigenesis.

Collaboration


Dive into the Craig P. Giacomini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine A. Del Vecchio

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pei Wang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge