Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig R. Fairchild is active.

Publication


Featured researches published by Craig R. Fairchild.


Cancer communications | 1991

Transfection with protein kinase C alpha confers increased multidrug resistance to MCF-7 cells expressing P-glycoprotein.

Gang Yu; Shakeel Ahmad; Angelo Aquino; Craig R. Fairchild; Jane B. Trepel; Shigeo Ohno; Koichi Suzuki; Takashi Tsuruo; Kenneth H. Cowan; Robert I. Glazer

Cross-resistance to anticancer drugs, termed multidrug resistance (mdr), has been functionally associated with the expression of a plasma membrane energy-dependent efflux pump, termed P-glycoprotein, the product of the mdr1 gene. When MCF-7 breast carcinoma cells were transfected with the human mdr1 gene (BC-19 cells), they expressed levels of P-glycoprotein equivalent to those of cells selected for resistance to doxorubicin (MCF-7/ADR) but exhibited 10- to 50-fold less resistance to doxorubicin and vinblastine. We have now demonstrated that when BC-19 cells were stably transfected with protein kinase C alpha (PKC alpha), resistance to doxorubicin and vinblastine was increased; wild-type MCF-7 cells transfected with PKC alpha did not exhibit any change in drug resistance. Increased resistance in PKC alpha-transfected BC-19 cells was associated with enhanced PKC activity and phosphorylation of P-glycoprotein and decreased drug accumulation. The PKC activator, phorbol dibutyrate, further increased resistance to doxorubicin and stimulated P-glycoprotein phosphorylation. These results demonstrate that transfection of P-glycoprotein-expressing cells with PKC resulted in increased mdr and that PKC may have served as an important modulator of this process.


Clinical Cancer Research | 2008

Synergistic Antitumor Activity of Ixabepilone (BMS-247550) Plus Bevacizumab in Multiple In vivo Tumor Models

Francis Y. Lee; Kelly Covello; Stephen Castaneda; Donald R. Hawken; David Kan; Anne Lewin; Mei-Li Wen; Rolf-Peter Ryseck; Craig R. Fairchild; Joseph Fargnoli; Robert Kramer

Purpose: Angiogenesis is a critical step in the establishment, growth, and metastasis of solid tumors, and combination of antiangiogenic agents with chemotherapy is an attractive therapeutic option. We investigated the potential of ixabepilone, the first in a new class of antineoplastic agents known as epothilones, to synergize with antiangiogenic agents to inhibit tumor growth. Experimental Design:In vitro and in vivo cytotoxicity of ixabepilone as single agent and in combination with two targeted antiangiogenic agents, bevacizumab or sunitinib, were examined in preclinical tumor models. Direct effects of the agents against endothelial cells was also examined and compared with the effects of paclitaxel as single agent and in combination with bevacizumab. Results: Ixabepilone showed robust synergistic antitumor activity in combination with bevacizumab and sunitinib in preclinical in vivo models derived from breast, colon, lung, and kidney cancers. The synergistic antitumor effect was greater with ixabepilone compared with paclitaxel. Furthermore, ixabepilone was more effective than paclitaxel at killing endothelial cells expressing P-glycoprotein in vitro and inhibiting endothelial cell proliferation and tumor angiogenesis in vivo. Conclusions: Ixabepilone may enhance the antitumor effects of antiangiogenic therapy by direct cytotoxicity and also indirectly via the killing of tumor-associated endothelial cells. Given that ixabepilone has reduced susceptibility to drug efflux pumps compared with taxanes, these data may explain the increased antiangiogenic and antitumor activity of ixabepilone in combination with antiangiogenic agents. Phase II studies to assess the efficacy and safety of ixabepilone plus bevacizumab in locally recurrent or metastatic breast cancer are planned.


Clinical Cancer Research | 2009

BMS-536924 Reverses IGF-IR-induced Transformation of Mammary Epithelial Cells and Causes Growth Inhibition and Polarization of MCF7 Cells

Beate Litzenburger; Hyun Jung Kim; Isere Kuiatse; Joan M. Carboni; Ricardo M. Attar; Marco M. Gottardis; Craig R. Fairchild; Adrian V. Lee

Purpose: This study aimed to test the ability of a new insulin-like growth factor receptor (IGF-IR) tyrosine kinase inhibitor, BMS-536924, to reverse the ability of constitutively active IGF-IR (CD8-IGF-IR) to transform MCF10A cells, and to examine the effect of the inhibitor on a range of human breast cancer cell lines. Experimental Design:CD8-IGF-IR-MCF10A cells were grown in monolayer culture, three-dimensional (3D) culture, and as xenografts, and treated with BMS-536924. Proliferation, cell cycle, polarity, and apoptosis were measured. Twenty-three human breast cancer cell lines were treated in monolayer culture with BMS-536924, and cell viability was measured. MCF7, MDA-MB-231, and MDA-MB-435 were treated with BMS-536924 in monolayer and 3D culture, and proliferation, migration, polarity, and apoptosis were measured. Results: Treatment of CD8-IGF-IR-MCF10A cells grown in 3D culture with BMS-536924 caused a blockade of proliferation, restoration of apical-basal polarity, and enhanced apoptosis, resulting in a partial phenotypic reversion to normal acini. In monolayer culture, BMS-536924 induced a dose-dependent inhibition of proliferation, with an accumulation of cells in G0/G1,, and completely blocked CD8-IGF-IR–induced migration, invasion, and anchorage-independent growth. CD8-IGF-IR-MCF10A xenografts treated with BMS-536924 (100 mg/kg/day) showed a 76% reduction in xenograft volume. In a series of 23 human breast cancer cell lines, BMS-536924 inhibited monolayer proliferation of 16 cell lines. Most strikingly, treatment of MCF7 cells grown in 3D culture with BMS-536924 caused blockade of proliferation, and resulted in the formation of hollow polarized lumen. Conclusions: These results show that the new small molecule BMS-536924 is an effective inhibitor of IGF-IR, causing a reversion of an IGF-IR–mediated transformed phenotype.


International Journal of Radiation Oncology Biology Physics | 1991

Keynote address : multidrug resistance : a pleiotropic response to cytotoxic drugs

Craig R. Fairchild; Kenneth H. Cowan

Tumor cells exposed in tissue culture to one of several different classes of antineoplastic agents, including anthracyclines, vinca alkaloids, epipodophyllotoxins, and certain antitumor antibiotics, can develop resistance to the selecting agent and cross resistance to the other classes of agents. This phenomena of multidrug resistance is generally associated with decreased drug accumulation and overexpression of a membrane glycoprotein. This membrane protein, referred to as P-glycoprotein, apparently acts as an energy-dependent drug efflux pump. Multidrug resistance in human MCF-7 breast cancer cells selected for resistance to adriamycin (AdrR MCF-7) is associated with amplification and overexpression of the mdr1 gene which encodes P-glycoprotein. A number of other changes are also seen in this resistant cell line including alterations in Phase I and Phase II drug metabolizing enzymes. Similar biochemical changes occur in a rat model for hepatocellular carcinogenesis and are associated in that system with broad spectrum resistance to hepatotoxins. The similar changes in these two models of resistance suggests that these changes might be part of a battery of genes whose expression can be altered in response to cytotoxic stress, thus rendering the cell resistant to a wide variety of cytotoxic agents.


Cancer Research | 2004

Apoptotic and cytostatic farnesyltransferase inhibitors have distinct pharmacology and efficacy profiles in tumor models

Veeraswamy Manne; Francis Y. Lee; David K. Bol; Johnni Gullo-Brown; Craig R. Fairchild; Louis J. Lombardo; Richard Smykla; Gregory D. Vite; Mei-Li D. Wen; Chiang Yu; Tai Wai Wong; John T. Hunt

BMS-214662 and BMS-225975 are tetrahydrobenzodiazepine-based farnesyltransferase inhibitors (FTIs) that have nearly identical structures and very similar pharmacological profiles associated with farnesyltransferase (FT) inhibition. Despite their similar activity against FT in vitro and in cells, these compounds differ dramatically in their apoptotic potency and tumor-regressing activity in vivo. BMS-214662 is the most potent apoptotic FTI known and exhibits curative responses in mice bearing a variety of staged human tumor xenografts such as HCT-116 human colon tumor. By contrast, BMS-225975 does not cause tumor regression and at best causes partial tumor growth inhibition in staged HCT-116 human colon tumor xenografts. Lack of tumor regression activity in BMS-225975 was attributable to its relatively weak apoptotic potency, not to poor cell permeability or pharmacokinetics. Both compounds were equally effective in inhibiting Ras processing and causing accumulation of a variety of nonfarnesylated substrates of FT in HCT-116 cells. Because BMS-225975 has poor apoptotic activity compared with BMS-214662 but inhibits FT to the same extent as BMS-214662, it is very unlikely that FT inhibition alone can account for the apoptotic potency of BMS-214662. Clearly distinct patterns of sensitivities in a cell line panel were obtained for the apoptotic FTI BMS-214662 and the cytostatic FTI BMS-225975. Activation of the c-Jun-NH2-terminal kinase pathway was readily observed with BMS-214662 but not with BMS-225975. We developed a highly sensitive San-1 murine xenograft tumor model that is particularly useful for evaluating the in vivo activity of cytostatic FTIs such as BMS-225975.


Clinical Cancer Research | 2011

Antitumor and Antiangiogenic Activities of BMS-690514, an Inhibitor of Human EGF and VEGF Receptor Kinase Families

Tai Wai Wong; Francis Lee; Stuart Emanuel; Craig R. Fairchild; Joseph Fargnoli; Brian E. Fink; Ashvinikumar V. Gavai; Amy Hammell; Benjamin Henley; Christine Hilt; John T. Hunt; Bala Krishnan; Daniel Kukral; Anne Lewin; Harold Malone; Derek J. Norris; Simone Oppenheimer; Gregory D. Vite; Chiang Yu

Purpose: The extensive involvement of the HER kinases in epithelial cancer suggests that kinase inhibitors targeting this receptor family have the potential for broad spectrum antitumor activity. BMS-690514 potently inhibits all three HER kinases, and the VEGF receptor kinases. This report summarizes data from biochemical and cellular pharmacology studies, as well as antitumor activity of BMS-690514. Experimental Design: The potency and selectivity of BMS-690514 was evaluated by using an extensive array of enzymatic and binding assays, as well as cellular assays that measure proliferation and receptor signaling. Antitumor activity was evaluated by using multiple xenograft models that depend on HER kinase signaling. The antiangiogenic properties of BMS-690514 were assessed in a matrigel plug assay, and effect on tumor blood flow was measured by dynamic contrast-enhanced MRI. Results: BMS-690514 is a potent and selective inhibitor of epidermal growth factor receptor (EGFR), HER2, and HER4, as well as the VEGF receptor kinases. It inhibits proliferation of tumor cells with potency that correlates with inhibition of receptor signaling, and induces apoptosis in lung tumor cells that have an activating mutation in EGFR. Antitumor activity was observed with BMS-690514 at multiple doses that are well tolerated in mice. There was evidence of suppression of tumor angiogenesis and endothelial function by BMS-690514, which may contribute to its efficacy. Conclusions: By combining inhibition of two receptor kinase families, BMS-690524 is a novel targeted agent that disrupts signaling in the tumor and its vasculature. Clin Cancer Res; 17(12); 4031–41. ©2011 AACR.


Archive | 2001

Development of Farnesyltransferase Inhibitors as Potential Antitumor Agents

Veeraswamy Manne; Frank Y. Lee; Ning Yan; Craig R. Fairchild; William C. Rose

Activating mutations of the ras genes are among the more common genetic aberrations known in human cancers, particularly in pancreatic and colon carcinomas (1). Three highly homologous members of the ras protooncogene family have been identified in higher mammals; H-ras, K-ras, and N-ras (2). All three ras genes code for proteins that end in a sequence called the “CAAX box,” which is the recognition sequence for post-translational farnesylation (3). Farnesylation is catalyzed by farnesyltransferase (FTase), a cytosolic enzyme that utilizes farnesyl pyrophosphate (FPP) as a farnesyl donor to modify the cysteine residue of the ras CAAX terminus (4). Anchoring of the Ras proteins to the inner surface of the plasma membrane is required for normal functions in signal transduction as well as for transforming activities and signaling would not occur when farnesylation is blocked (5). Although farnesylation is not entirely specific for Ras proteins, only a few other cellular proteins undergo this posttranslational modification (6,7). Our goal has been to develop potent and selective inhibitors of FTase in an attempt to inhibit and/or reverse Ras-mediated malignant transformation in rodent and human cancers, in cell culture as well as in animal models and ultimately in humans.


Journal of Medicinal Chemistry | 2004

Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays.

Louis J. Lombardo; Francis Y. Lee; Ping Chen; Derek J. Norris; Joel C. Barrish; Kamelia Behnia; Stephen Castaneda; Lyndon A. M. Cornelius; Jagabandhu Das; Arthur M. Doweyko; Craig R. Fairchild; John T. Hunt; Ivan Inigo; Kathy A. Johnston; Amrita Kamath; David Kan; Herbert E. Klei; Punit Marathe; Suhong Pang; Russell Peterson; Sidney Pitt; Gary L. Schieven; Robert J. Schmidt; John S. Tokarski; Mei-Li Wen; John Wityak; Robert M. Borzilleri


Clinical Cancer Research | 2001

BMS-247550 A Novel Epothilone Analog with a Mode of Action Similar to Paclitaxel but Possessing Superior Antitumor Efficacy

Francis Y. Lee; Robert M. Borzilleri; Craig R. Fairchild; Soong-Hoon Kim; Byron H. Long; Carmen Reventos-Suarez; Gregory D. Vite; William C. Rose; Robert Kramer


Cancer Research | 2007

Identification of Candidate Molecular Markers Predicting Sensitivity in Solid Tumors to Dasatinib: Rationale for Patient Selection

Fei Huang; Karen A. Reeves; Xia Han; Craig R. Fairchild; Suso Platero; Tai W. Wong; Francis Y. Lee; Peter Shaw; Edwin A. Clark

Collaboration


Dive into the Craig R. Fairchild's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge