Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig S. Donald is active.

Publication


Featured researches published by Craig S. Donald.


Drug Discovery Today | 2009

Making medicinal chemistry more effective—application of Lean Sigma to improve processes, speed and quality

Shalini Andersson; Alan Armstrong; Annika Björe; Sue Bowker; Steve Chapman; Robert D. M. Davies; Craig S. Donald; Bryan J. Egner; Thomas Elebring; Sara Holmqvist; Tord Inghardt; Petra Johannesson; Magnus Johansson; Craig Johnstone; Paul D. Kemmitt; Jan Kihlberg; Pernilla Korsgren; Malin Lemurell; Jane E. Moore; Jonas Pettersson; Helen Pointon; Paul Schofield; Nidhal Selmi; Paul R.O. Whittamore

The pharmaceutical industry, particularly the small molecule domain, faces unprecedented challenges of escalating costs, high attrition as well as increasing competitive pressure from other companies and from new treatment modes such as biological products. In other industries, process improvement approaches, such as Lean Sigma, have delivered benefits in speed, quality and cost of delivery. Examining the medicinal chemistry contributions to the iterative improvement process of design-make-test-analyse from a Lean Sigma perspective revealed that major improvements could be made. Thus, the cycle times of synthesis, as well as compound analysis and purification, were reduced dramatically. Improvements focused on team, rather than individual, performance. These new ways of working have consequences for staff engagement, goals, rewards and motivation, which are also discussed.


Cancer Research | 2016

AZD9496: An Oral Estrogen Receptor Inhibitor That Blocks the Growth of ER-Positive and ESR1-Mutant Breast Tumors in Preclinical Models.

Hazel M. Weir; Robert Hugh Bradbury; Mandy Lawson; Alfred A. Rabow; David Buttar; Rowena Callis; Jon Owen Curwen; Camila de Almeida; Peter Ballard; Micheal Hulse; Craig S. Donald; Lyman Feron; Galith Karoutchi; Philip A. MacFaul; Thomas A. Moss; Richard A. Norman; Stuart E. Pearson; Michael Tonge; Gareth Davies; Graeme Walker; Zena Wilson; Rachel Rowlinson; Steve Powell; Claire Sadler; Graham Richmond; Brendon Ladd; Ermira Pazolli; Anne Marie Mazzola; Celina D'Cruz; Chris De Savi

Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.


Journal of Medicinal Chemistry | 2015

Optimization of a Novel Binding Motif to (E)-3-(3,5-Difluoro-4-((1R,3R)-2-(2-Fluoro-2-Methylpropyl)-3-Methyl-2, 3,4,9-Tetrahydro-1H-Pyrido[3,4-B]Indol-1-Yl)Phenyl)Acrylic Acid (Azd9496), a Potent and Orally Bioavailable Selective Estrogen Receptor Downregulator and Antagonist.

Chris De Savi; Robert Hugh Bradbury; Alfred A. Rabow; Richard A. Norman; Camila de Almeida; David M. Andrews; Peter Ballard; David Buttar; Rowena Callis; Gordon S. Currie; Jon Owen Curwen; Christopher D. Davies; Craig S. Donald; Lyman Feron; Helen Gingell; Steven C. Glossop; Barry R. Hayter; Syeed Hussain; Galith Karoutchi; Scott Lamont; Philip A. MacFaul; Thomas A. Moss; Stuart E. Pearson; Michael Tonge; Graeme Walker; Hazel M. Weir; Zena Wilson

The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.


Bioorganic & Medicinal Chemistry Letters | 2012

Identification, optimisation and in vivo evaluation of oxadiazole DGAT-1 inhibitors for the treatment of obesity and diabetes

William Mccoull; Matthew S. Addie; Alan Martin Birch; Susan Birtles; Linda K. Buckett; Roger John Butlin; Suzanne S. Bowker; Scott Boyd; Stephen Chapman; Robert D. M. Davies; Craig S. Donald; Clive Green; Chloe Jenner; Paul D. Kemmitt; Andrew G. Leach; Graeme C. Moody; Pablo Morentin Gutierrez; Nicholas John Newcombe; Thorsten Nowak; Martin J. Packer; Alleyn T. Plowright; John Revill; Paul Schofield; Chris Sheldon; Steve Stokes; Andrew V. Turnbull; Steven Wang; David Paul Whalley; J. Matthew Wood

A novel series of DGAT-1 inhibitors was discovered from an oxadiazole amide high throughput screening (HTS) hit. Optimisation of potency and ligand lipophilicity efficiency (LLE) resulted in a carboxylic acid containing clinical candidate 53 (AZD3988), which demonstrated excellent DGAT-1 potency (0.6 nM), good pharmacokinetics and pre-clinical in vivo efficacy that could be rationalised through a PK/PD relationship.


Journal of Medicinal Chemistry | 2012

Free-Wilson and Structural Approaches to Co-optimizing Human and Rodent Isoform Potency for 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) Inhibitors

Frederick W. Goldberg; Andrew G. Leach; James S. Scott; Wendy L. Snelson; Sam D. Groombridge; Craig S. Donald; Stuart Norman Lile Bennett; Cristian Bodin; Pablo Morentin Gutierrez; Amy C. Gyte

11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) has been a target of intensive research efforts across the pharmaceutical industry, due to its potential for the treatment of type II diabetes and other elements of the metabolic syndrome. To demonstrate the value of 11β-HSD1 in preclinical models, we required inhibitors with good potency against both human and rodent isoforms. Herein, we describe our efforts to understand how to co-optimize human and murine potency within the (5-hydroxy-2-adamantyl)-pyrimidine-5-carboxamide series. Two approaches are described-a data-driven (Free-Wilson) analysis and a structure-based design approach. The conclusions from these approaches were used to inform an efficient campaign to design compounds with consistently good human/murine potency within a logD(7.4) range of 1-3. Compounds 20 and 26 demonstrated good rodent PK, which allowed us to demonstrate a PK/PD relationship in rat and mouse. We then evaluated 26 against glycemic and body weight end points in murine disease models, where it demonstrated glucose and body weight efficacy at 300 mg/kg/day but only body weight efficacy at 50 mg/kg/day, despite providing >90% target engagement in the liver.


Bioorganic & Medicinal Chemistry Letters | 2011

Design of a potent, soluble glucokinase activator with increased pharmacokinetic half-life.

Kurt Gordon Pike; Joanne V. Allen; Peter William Rodney Caulkett; David S. Clarke; Craig S. Donald; Mark L. Fenwick; Keith M. Johnson; Craig Johnstone; Darren Mckerrecher; John Wall Rayner; Rolf Peter Walker; Ingrid Wilson

The continued optimization of a series of glucokinase activators is described, including attempts to understand the interplay between molecular structure and the composite parameter of unbound clearance. These studies resulted in the discovery of a new scaffold for glucokinase activators and further exploration of this scaffold led to the identification of GKA60. GKA60 maintains an excellent balance of potency and physical properties whilst possessing a significantly different, but complimentary, pre-clinical pharmacokinetic profile compared with the previously disclosed compound GKA50.


Journal of Medicinal Chemistry | 2015

Structure-Based Design of Potent and Selective Inhibitors of the Metabolic Kinase PFKFB3

Scott Boyd; Joanna Brookfield; Susan E. Critchlow; Iain A. Cumming; Nicola Curtis; J.E. Debreczeni; Sébastien L. Degorce; Craig S. Donald; Nicola J. Evans; Sam D. Groombridge; Philip Hopcroft; Neil P. Jones; Jason Grant Kettle; Scott Lamont; Hilary J. Lewis; Philip MacFaull; Sheila McLoughlin; Laurent Jean Martin Rigoreau; James M. Smith; Steve St-Gallay; Julie K. Stock; Andrew P. Turnbull; Edward Wheatley; Jon Winter; Jonathan Wingfield

A weak screening hit with suboptimal physicochemical properties was optimized against PFKFB3 kinase using critical structure-guided insights. The resulting compounds demonstrated high selectivity over related PFKFB isoforms and modulation of the target in a cellular context. A selected example demonstrated exposure in animals following oral dosing. Examples from this series may serve as useful probes to understand the emerging biology of this metabolic target.


Organic and Biomolecular Chemistry | 2016

Flexible synthesis of polyfunctionalised 3-fluoropyrroles

Thomas J. Cogswell; Craig S. Donald; Rodolfo Marquez

An efficient and selective approach for the synthesis of polyfunctionalised 3-fluoropyrroles has been developed starting from commercial aldehydes. The methodology is concise, efficient and allows for the modular and systematic assembly of polysubstituted 3-fluoropyrroles. This synthesis provides an alternative and highly convergent strategy for the generation of these chemically and biologically important units.


Journal of Organic Chemistry | 2015

Synthesis of 4-Arylthieno[2,3-b]pyridines and 4-Aminothieno[2,3-b]pyridines via a Regioselective Bromination of Thieno[2,3-b]pyridine

Simon Lucas; Jane E. Moore; Craig S. Donald; Janet Hawkins

The first regioselective, mild bromination of thieno[2,3-b]pyridine is described herein. The reaction proceeds with selectivity toward the 4-position (87% isolated yield). Subsequent cross-coupling reactions proceed in excellent yields and demonstrate the potential of 4-bromothieno[2,3-b]pyridine as a building block for use in drug discovery research.


Archive | 2016

Chapter 14:Asymmetric Methods and Their Use in the Pharmaceutical Industry

Peter D. Smith; Mark A. Graham; Rachel H. Munday; Craig S. Donald; Thomas M. McGuire; Robert E. Kyne

The importance of chirality in drug development has increased rapidly over the past four decades. In response to this need a multitude of asymmetric reactions have been developed which have in turn greatly expanded the three dimensional design space accessible to medicinal chemists. This chapter highlights the importance of enantioselective synthesis as a means of attaining chirally pure compounds, important to modern drug discovery programmes. Several key stereoselective synthesis methods, which have found widespread application in the pharmaceutical industry, are discussed within. The first part of the chapter is concerned with asymmetric hydrogenation. This type of reaction can be used to facilitate the reduction of a wide range of substrate classes including alkenes, ketones, imines and heterocycles and has been used extensively in the synthesis of pharmaceuticals in early stage drug discovery programmes, process development and manufacture. The second part of this chapter discusses the use of chiral reagents for hydride reduction of ketones, a class of reaction widely used in the pharmaceutical industry. DIP-Cl and the CBS reagent are the focus of this section due to their extensive utility in drug discovery programmes. The third section of the chapter discusses the catalytic enantioselective oxidation of olefins. Asymmetric epoxidation and dihydroxylation, in particular the catalytic systems developed by Sharpless, Jacobson and Shi, are explored. The reliability of these systems for the enantioselective oxidation of double bonds and the utility of the resultant molecules have made the reactions hugely impactful in pharmaceutical chemistry. The chapter concludes with a review of the use of chiral auxiliaries and organocatalysis in an industrial setting. Chiral auxiliaries have been used extensively, and are particularly relevant in the early stages of drug discovery where robustness and broad applicability are more important than atom efficiency and cost. In contrast there have, thus far, been relatively few examples of organocatalysis in the industrial setting due, largely, to the relative infancy of the field. It is obvious, however, that there is massive potential for the application of this technology in the drug discovery arena in the years ahead.

Collaboration


Dive into the Craig S. Donald's collaboration.

Researchain Logo
Decentralizing Knowledge