Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig S. Nowell is active.

Publication


Featured researches published by Craig S. Nowell.


PLOS Genetics | 2011

Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence.

Craig S. Nowell; Nicholas Bredenkamp; Stéphanie Tetélin; Xin Jin; Christin Tischner; Harsh Vaidya; Julie Sheridan; Frances H. Stenhouse; Raphaela Heussen; Andrew Smith; C. Clare Blackburn

The forkhead transcription factor Foxn1 is indispensable for thymus development, but the mechanisms by which it mediates thymic epithelial cell (TEC) development are poorly understood. To examine the cellular and molecular basis of Foxn1 function, we generated a novel and revertible hypomorphic allele of Foxn1. By varying levels of its expression, we identified a number of features of the Foxn1 system. Here we show that Foxn1 is a powerful regulator of TEC differentiation that is required at multiple intermediate stages of TE lineage development in the fetal and adult thymus. We find no evidence for a role for Foxn1 in TEC fate-choice. Rather, we show it is required for stable entry into both the cortical and medullary TEC differentiation programmes and subsequently is needed at increasing dosage for progression through successive differentiation states in both cortical and medullary TEC. We further demonstrate regulation by Foxn1 of a suite of genes with diverse roles in thymus development and/or function, suggesting it acts as a master regulator of the core thymic epithelial programme rather than regulating a particular aspect of TEC biology. Overall, our data establish a genetics-based model of cellular hierarchies in the TE lineage and provide mechanistic insight relating titration of a single transcription factor to control of lineage progression. Our novel revertible hypomorph system may be similarly applied to analyzing other regulators of development.


Development | 2014

Regeneration of the aged thymus by a single transcription factor

Nicholas Bredenkamp; Craig S. Nowell; C. Clare Blackburn

Thymic involution is central to the decline in immune system function that occurs with age. By regenerating the thymus, it may therefore be possible to improve the ability of the aged immune system to respond to novel antigens. Recently, diminished expression of the thymic epithelial cell (TEC)-specific transcription factor Forkhead box N1 (FOXN1) has been implicated as a component of the mechanism regulating age-related involution. The effects of upregulating FOXN1 function in the aged thymus are, however, unknown. Here, we show that forced, TEC-specific upregulation of FOXN1 in the fully involuted thymus of aged mice results in robust thymus regeneration characterized by increased thymopoiesis and increased naive T cell output. We demonstrate that the regenerated organ closely resembles the juvenile thymus in terms of architecture and gene expression profile, and further show that this FOXN1-mediated regeneration stems from an enlarged TEC compartment, rebuilt from progenitor TECs. Collectively, our data establish that upregulation of a single transcription factor can substantially reverse age-related thymic involution, identifying FOXN1 as a specific target for improving thymus function and, thus, immune competence in patients. More widely, they demonstrate that organ regeneration in an aged mammal can be directed by manipulation of a single transcription factor, providing a provocative paradigm that may be of broad impact for regenerative biology.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells.

Marianne G. L. Depreter; Natalie Blair; Terri L. Gaskell; Craig S. Nowell; Kathleen Davern; Adelina Pagliocca; Frances H. Stenhouse; Alison Farley; Adrian Fraser; Jan Vrána; Kevin Robertson; Grant Morahan; Simon R. Tomlinson; C. Clare Blackburn

The thymus is essential for a functional immune system, because the thymic stroma uniquely supports T lymphocyte development. We have previously identified the epithelial progenitor population from which the thymus arises and demonstrated its ability to generate an organized functional thymus upon transplantation. These thymic epithelial progenitor cells (TEPC) are defined by surface determinants recognized by the mAbs MTS20 and MTS24, which were also recently shown to identify keratinocyte progenitor cells in the skin. However, the biochemical nature of the MTS20 and MTS24 determinants has remained unknown. Here we show, via expression profiling of fetal mouse TEPC and their differentiated progeny and subsequent analyses, that both MTS20 and MTS24 specifically bind an orphan protein of unknown function, Placenta-expressed transcript (Plet)-1. In the postgastrulation embryo, Plet-1 expression is highly restricted to the developing pharyngeal endoderm and mesonephros until day 11.5 of embryogenesis, consistent with the MTS20 and MTS24 staining pattern; both MTS20 and MTS24 specifically bind cell lines transfected with Plet-1; and antibodies to Plet-1 recapitulate MTS20/24 staining. In adult tissues, we demonstrate expression in a number of sites, including mammary and prostate epithelia and in the pancreas, where Plet-1 is specifically expressed by the major duct epithelium, providing a specific cell surface marker for this putative reservoir of pancreatic progenitor/stem cells. Plet-1 will thus provide an invaluable tool for genetic analysis of the lineage relationships and molecular mechanisms operating in the development, homeostasis, and injury in several organ/tissue systems.


Methods of Molecular Biology | 2007

Thymus organogenesis and development of the thymic stroma.

Craig S. Nowell; Alison Farley; C. Clare Blackburn

T-cell development occurs principally in the thymus. Here, immature progenitor cells are guided through the differentiation and selection steps required to generate a complex T-cell repertoire that is both self-tolerant and has propensity to bind self major histocompatibility complex. These processes depend on an array of functionally distinct epithelial cell types within the thymic stroma, which have a common developmental origin in the pharyngeal endoderm. Here, we describe the structural and phenotypic attributes of the thymic stroma, and review current cellular and molecular understanding of thymus organogenesis.


PLOS ONE | 2014

Long-term persistence of functional thymic epithelial progenitor cells in vivo under conditions of low FOXN1 expression.

Xin Jin; Craig S. Nowell; Svetlana Ulyanchenko; Frances H. Stenhouse; C. Clare Blackburn

Normal thymus function reflects interactions between developing T-cells and several thymic stroma cell types. Within the stroma, key functions reside in the distinct cortical and medullary thymic epithelial cell (TEC) types. It has been demonstrated that, during organogenesis, all TECs can be derived from a common thymic epithelial progenitor cell (TEPC). The properties of this common progenitor are thus of interest. Differentiation of both cTEC and mTEC depends on the epithelial-specific transcription factor FOXN1, although formation of the common TEPC from which the TEC lineage originates does not require FOXN1. Here, we have used a revertible severely hypomorphic allele of Foxn1, Foxn1R, to test the stability of the common TEPC in vivo. By reactivating Foxn1 expression postnatally in Foxn1R /− mice we demonstrate that functional TEPCs can persist in the thymic rudiment until at least 6 months of age, and retain the potential to give rise to both cortical and medullary thymic epithelial cells (cTECs and mTECs). These data demonstrate that the TEPC-state is remarkably stable in vivo under conditions of low Foxn1 expression, suggesting that manipulation of FOXN1 activity may prove a valuable method for long term maintenance of TEPC in vitro.


PLOS ONE | 2016

Foxn1 Is Dynamically Regulated in Thymic Epithelial Cells during Embryogenesis and at the Onset of Thymic Involution

Kathy E. O’Neill; Nicholas Bredenkamp; Christin Tischner; Harsh Vaidya; Frances H. Stenhouse; C. Diana Peddie; Craig S. Nowell; Terri L. Gaskell; C. Clare Blackburn

Thymus function requires extensive cross-talk between developing T-cells and the thymic epithelium, which consists of cortical and medullary TEC. The transcription factor FOXN1 is the master regulator of TEC differentiation and function, and declining Foxn1 expression with age results in stereotypical thymic involution. Understanding of the dynamics of Foxn1 expression is, however, limited by a lack of single cell resolution data. We have generated a novel reporter of Foxn1 expression, Foxn1G, to monitor changes in Foxn1 expression during embryogenesis and involution. Our data reveal that early differentiation and maturation of cortical and medullary TEC coincides with precise sub-lineage-specific regulation of Foxn1 expression levels. We further show that initiation of thymic involution is associated with reduced cTEC functionality, and proportional expansion of FOXN1-negative TEC in both cortical and medullary sub-lineages. Cortex-specific down-regulation of Foxn1 between 1 and 3 months of age may therefore be a key driver of the early stages of age-related thymic involution.


Principles of Tissue Engineering (Fourth Edition) | 2014

Chapter 43 – Thymus and Parathyroid Organogenesis

Kathy E. O’Neill; Craig S. Nowell; Ellen R. Richie; Nancy R. Manley; C. Clare Blackburn

The thymus is the principal site of T cell development and therefore is of central importance within the immune system: congenital athymia results in profound immunodeficiency, while perturbed thymic function can lead to autoimmunity. Although highly active in early life, the thymus undergoes premature involution, such that de novo T cell development diminishes significantly with age. This has implications for immune function in the aging population, and in clinical procedures such as bone marrow and solid organ transplantation, where thymic function is required for T cell reconstitution and/or tolerance induction. Interest therefore exists in enhancing immune reconstitution through regenerative or cell therapies for boosting thymus activity in vivo, or providing customized in vitro generated T cell repertoires for adoptive transfer. The success of such strategies is likely to depend on a detailed knowledge of the mechanisms regulating thymus development and homeostasis. Here, we review current understanding of cellular and molecular regulation of thymus organogenesis, focusing on the epithelial component of the thymic stroma which provides many of the specialist functions required to mediate T cell differentiation and T cell repertoire selection.


Elsevier Inc. | 2013

Thymus and Parathyroid Organogenesis

Kathy O'Neill; Craig S. Nowell; Ellen R. Richie; Nancy R. Manley; C. Clare Blackburn

The thymus is the principal site of T cell development and therefore is of central importance within the immune system: congenital athymia results in profound immunodeficiency, while perturbed thymic function can lead to autoimmunity. Although highly active in early life, the thymus undergoes premature involution, such that de novo T cell development diminishes significantly with age. This has implications for immune function in the aging population, and in clinical procedures such as bone marrow and solid organ transplantation, where thymic function is required for T cell reconstitution and/or tolerance induction. Interest therefore exists in enhancing immune reconstitution through regenerative or cell therapies for boosting thymus activity in vivo, or providing customized in vitro generated T cell repertoires for adoptive transfer. The success of such strategies is likely to depend on a detailed knowledge of the mechanisms regulating thymus development and homeostasis. Here, we review current understanding of cellular and molecular regulation of thymus organogenesis, focusing on the epithelial component of the thymic stroma which provides many of the specialist functions required to mediate T cell differentiation and T cell repertoire selection.


Principles of Tissue Engineering (Third Edition) | 2007

Chapter Forty-Four – Thymus and Parathyroid Organogenesis

Craig S. Nowell; Ellen R. Richie; Nancy R. Manley; Catherine Clare Blackburn


Archive | 2017

Explorer Regeneration of the aged thymus by a single transcription factor

Nicholas Bredenkamp; Craig S. Nowell; Catherine Clare Blackburn

Collaboration


Dive into the Craig S. Nowell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen R. Richie

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harsh Vaidya

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Jin

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge