Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig S. Wilding is active.

Publication


Featured researches published by Craig S. Wilding.


Journal of Evolutionary Biology | 2001

Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers

Craig S. Wilding; Roger K. Butlin; J. Grahame

Speciation requires the acquisition of reproductive isolation, and the circumstances under which this could evolve are of great interest. Are new species formed after the acquisition of generalized incompatibility arising between physically separated populations, or may they arise as a result of the action of disruptive selection beginning with the divergence of a rather restricted set of gene loci? Here we apply the technique of amplified fragment length polymorphism (AFLP) analysis to an intertidal snail whose populations display a cline in shell shape across vertical gradients on rocky shores. We compare the FST values for 306 AFLP loci with the distribution of FST estimated from a simulation model using values of mutation and migration derived from the data. We find that about 5% of these loci show greater differentiation than expected, providing evidence of the effects of selection across the cline, either direct or indirect through linkage. This is consistent with expectations from nonallopatric speciation models that propose an initial divergence of a small part of the genome driven by strong disruptive selection while divergence at other loci is prevented by gene flow. However, the pattern could also be the result of differential introgression after secondary contact.


Journal of Medical Genetics | 2004

Gene–gene interaction in folate-related genes and risk of neural tube defects in a UK population

Caroline L Relton; Craig S. Wilding; Mark S. Pearce; A J Laffling; Patricia Jonas; Sa Lynch; E. J. Tawn; John Burn

Objective: To investigate the contribution of polymorphic variation in genes involved in the folate-dependent homocysteine pathway in the aetiology of neural tube defects (NTD). Design: Case-control association study. Subjects: A total of 530 individuals from families affected by NTD, 645 maternal controls, and 602 healthy newborn controls from the northern UK. Main outcome measures: Seven polymorphisms in six genes coding for proteins in the folate-dependent homocysteine pathway (MTHFR 677C→T, MTHFR 1298A→C, MTRR 66A→G, SHMT 1420C→T, CβS 844ins68, GCPII 1561C→T, RFC-1 80G→A). The impact of each polymorphism and the effect of gene–gene interactions (epistasis) upon risk of NTD were assessed using logistic regression analysis. Results: The MTHFR 677C→T polymorphism was shown to represent a risk factor in NTD cases (CC v CT+TT odds ratio (OR) 2.03 [95% confidence interval (CI) 1.09, 3.79] p = 0.025) and the MTRR 66A→G polymorphism was shown to exert a protective effect in NTD cases (AA v AG+GG OR 0.31 [95% CI 0.10, 0.94] p = 0.04). When statistical tests for interaction were conducted, three genotype combinations in cases (MTRR/GCPII; MTHFR 677/CβS; MTHFR 677/MTRR) and one combination in case mothers (CβS/RFC-1) were shown to elevate NTD risk. Maternal–fetal interaction was also detected when offspring carried the MTHFR 677C→T variant and mothers carried the MTRR 66A→G variant, resulting in a significantly elevated risk of NTD. Conclusion: Both independent genetic effects and gene–gene interaction were observed in relation to NTD risk. Multi-locus rather than single locus analysis might be preferable to gain an accurate assessment of genetic susceptibility to NTD.


Evolution | 2006

Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis

J. Grahame; Craig S. Wilding; Roger K. Butlin

Abstract Steep environmental gradients offer important opportunities to study the interaction between natural selection and gene flow. Allele frequency clines are expected to form at loci under selection, but unlinked neutral alleles may pass easily across these clines unless a generalized barrier evolves. Here we consider the distribution of forms of the intertidal gastropod Littorina saxatilis, analyzing shell shape and amplified fragment length polymorphism (AFLP) loci on two rocky shores in Britain. On the basis of previous work, the AFLP loci were divided into differentiated and undifferentiated groups. On both shores, we have shown a sharp cline in allele frequencies between the two morphs for differentiated AFLP loci. This is coincident with a habitat transition on the shore where the two habitats (cliff and boulder field) are immediately contiguous. The allele frequency clines coincide with a cline in shell morphology. In the middle of the cline, linkage disequilibrium for the differentiated loci rises in accordance with expectation. The clines are extremely narrow relative to dispersal, probably as a result of both strong selection and habitat choice. An increase in FST for undifferentiated AFLPs between morphs, relative to within‐morph comparisons, is consistent with there being a general barrier to gene flow across the contact zone. These features are consistent either with an episode of allopatric divergence followed by secondary contact or with primary, nonallopatric divergence. Further data will be needed to distinguish between these alternatives


Proceedings of the National Academy of Sciences of the United States of America | 2012

Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana

Sara N. Mitchell; Bradley J. Stevenson; Pie Müller; Craig S. Wilding; Alexander Egyir-Yawson; Stuart G. Field; Janet Hemingway; Mark J. I. Paine; Hilary Ranson; Martin J. Donnelly

In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.


Parasites & Vectors | 2011

Insecticide resistance in Aedes aegypti populations from Ceará, Brazil

Estelita Pereira Lima; Marcelo Henrique Santos Paiva; Ana Paula de Araújo; Éllyda Vanessa Gomes da Silva; Ulisses Mariano da Silva; Lúcia Nogueira de Oliveira; Antônio Euzébio Goulart Sant'Ana; Clarisse Nogueira Barbosa; Clovis C de Paiva Neto; Craig S. Wilding; Constância Flávia Junqueira Ayres; Maria Alice Varjal de Melo Santos

BackgroundOrganophosphates and pyrethroids are used widely in Brazil to control Aedes aegypti, the main vector of dengue viruses, under the auspices of the National Programme for Dengue Control. Resistance to these insecticides is widespread throughout Brazil. In Ceará the vector is present in 98% of districts and resistance to temephos has been reported previously. Here we measure resistance to temephos and the pyrethroid cypermethrin in three populations from Ceará and use biochemical and molecular assays to characterise resistance mechanisms.ResultsResistance to temephos varied widely across the three studied populations, with resistance ratios (RR95) of 7.2, 30 and 192.7 in Juazeiro do Norte, Barbalha and Crato respectively. The high levels of resistance detected in Barbalha and Crato (RR95 ≥ 30) imply a reduction of temephos efficacy, and indeed in simulated field tests reduced effectiveness was observed for the Barbalha population. Two populations (Crato and Barbalha) were also resistant to cypermethrin, whilst Juazeiro do Norte showed only an altered susceptibility. The Ile1011Met kdr mutation was detected in all three populations and Val1016Ile in Crato and Juazeiro do Norte. 1011Met was significantly associated with resistance to cypermethrin in the Crato population. Biochemical tests showed that only the activity of esterases and GSTs, among the tested detoxification enzymes, was altered in these populations when compared with the Rockefeller strain.ConclusionsOur results demonstrate that two A. aegypti populations from Ceará are under strong selection pressure by temephos, compromising the field effectiveness of this organophosphate. Our results also provide evidence that the process of reducing resistance to this larvicide in the field is difficult and slow and may require more than seven years for reversal. In addition, we show resistance to cypermethrin in two of the three populations studied, and for the first time the presence of the allele 1016Ile in mosquito populations from northeastern Brazil. A significant association between 1011M et and resistance was observed in one of the populations. Target-site mechanisms seem not to be implicated in temephos resistance, reinforcing the idea that for the studied populations, detoxification enzymes most likely play a major role in the resistance to this insecticide.


Trends in Parasitology | 2009

Does kdr genotype predict insecticide-resistance phenotype in mosquitoes?

Martin J. Donnelly; Vincent Corbel; David Weetman; Craig S. Wilding; Martin S. Williamson; William C. Black

Several groups are developing and applying DNA-based technologies to monitor insecticide-based disease control programmes. However, several recent papers have concluded that the knockdown resistance (kdr) genotype-phenotype correlation that is observed in a wide variety of taxa might not hold in all mosquitoes. In this article, we review the evidence to support this putative breakdown and argue that the conclusion follows from unreliable data or the unparsimonious interpretation of data. We assert that the link between kdr genotype and DDT- and pyrethroid-susceptibility phenotype is clear. However, we emphasize that kdr genotype might explain only a portion of heritable variation in resistance and that diagnostic assays to test the importance of other resistance mechanisms in field populations are required.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Gene amplification and microsatellite polymorphism underlie a recent insect host shift

Chris Bass; Christoph T. Zimmer; Jacob M. Riveron; Craig S. Wilding; Charles S. Wondji; Martin Kaussmann; Linda M. Field; Martin S. Williamson; Ralf Nauen

Significance Insect host shifts may lead to sympatric speciation and can create new crop pests, however identifying the genetic changes involved has proved elusive. We studied a subspecies of the aphid Myzus persicae that has recently host shifted to tobacco and are resistant to the plant alkaloid nicotine. We found these races overexpress a cytochrome P450 enzyme (CYP6CY3) that allows them to detoxify nicotine and also certain synthetic insecticides. Overexpression of CYP6CY3 is caused by gene amplification (up to 100 copies) and expansion of a dinucleotide microsatellite in the promoter. Our findings provide insights into the molecular drivers of insect host shifts. Host plant shifts of herbivorous insects may be a first step toward sympatric speciation and can create new pests of agriculturally important crops; however, the molecular mechanisms that mediate this process are poorly understood. Certain races of the polyphagous aphid Myzus persicae have recently adapted to feed on tobacco (Myzus persicae nicotianae) and show a reduced sensitivity to the plant alkaloid nicotine and cross-resistance to neonicotinoids a class of synthetic insecticides widely used for control. Here we show constitutive overexpression of a cytochrome P450 (CYP6CY3) allows tobacco-adapted races of M. persicae to efficiently detoxify nicotine and has preadapted them to resist neonicotinoid insecticides. CYP6CY3, is highly overexpressed in M. persicae nicotianae clones from three continents compared with M. persicae s.s. and expression level is significantly correlated with tolerance to nicotine. CYP6CY3 is highly efficient (compared with the primary human nicotine-metabolizing P450) at metabolizing nicotine and neonicotinoids to less toxic metabolites in vitro and generation of transgenic Drosophila expressing CYP6CY3 demonstrate that it confers resistance to both compounds in vivo. Overexpression of CYP6CY3 results from the expansion of a dinucleotide microsatellite in the promoter region and a recent gene amplification, with some aphid clones carrying up to 100 copies. We conclude that the mutations leading to overexpression of CYP6CY3 were a prerequisite for the host shift of M. persicae to tobacco and that gene amplification and microsatellite polymorphism are evolutionary drivers in insect host adaptation.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae

Chris Jones; Milindu Liyanapathirana; Fiacre Agossa; David Weetman; Hilary Ranson; Martin J. Donnelly; Craig S. Wilding

Insecticide resistance is an ideal model to study the emergence and spread of adaptative variants. In the African malaria mosquito, Anopheles gambiae, this is complemented by a strong public health rationale. In this insect, resistance to pyrethroid and DDT insecticides is strongly associated with the mutations L1014F and L1014S within the para voltage-gated sodium channel (VGSC). Across much of West Africa, 1014F frequency approaches fixation. Here, we document the emergence of a mutation, N1575Y, within the linker between domains III-IV of the VGSC. In data extending over 40 kbp of the VGSC 1575Y occurs on only a single long-range haplotype, also bearing 1014F. The 1014F-1575Y haplotype was found in both M and S molecular forms of An. gambiae in West/Central African sample sites separated by up to 2,000 km. In Burkina Faso M form, 1575Y allele frequency rose significantly from 0.053 to 0.172 between 2008 and 2010. Extended haplotype homozygosity analysis of the wild-type 1575N allele showed rapid decay of linkage disequilibrium (LD), in sharp contrast to the extended LD exhibited by 1575Y. A haplotype with long-range LD and high/increasing frequency is a classical sign of strong positive selection acting on a recent mutant. 1575Y occurs ubiquitously on a 1014F haplotypic background, suggesting that the N1575Y mutation compensates for deleterious fitness effects of 1014F and/or confers additional resistance to insecticides. Haplotypic tests of association suggest the latter: The 1014F-1575Y haplotype confers a significant additive benefit above 1014F-1575N for survival to DDT (M form P = 0.03) and permethrin (S form P = 0.003).


Journal of Molecular Evolution | 1999

Partial sequence of the mitochondrial genome of Littorina saxatilis: relevance to gastropod phylogenetics.

Craig S. Wilding; P. J. Mill; J. Grahame

Abstract. A 8022 base pair fragment from the mitochondrial DNA of the prosobranch gastropod Littorina saxatilis has been sequenced and shown to contain the complete genes for 12 transfer RNAs and five protein genes (CoII, ATPase 6, ATPase 8, ND1, ND6), two partial protein genes (CoI and cyt b), and two ribosomal RNAs (small and large subunits). The order of these constituent genes differs from those of other molluscan mitochondrial gene arrangements. Only a single rearrangement involving a block of protein coding genes and three tRNA translocations are necessary to produce identical gene orders between L. saxatilis and K. tunicata. However, only one gene boundary is shared between the L. saxatilis gene order and that of the pulmonate gastropod Cepaea nemoralis. This extends the observation that there is little conservation of mitochrondrial gene order amongst the Mollusca and suggests that radical mitochondrial DNA gene rearrangement has occurred on the branch leading to the pulmonates.


Medical and Veterinary Entomology | 2013

Insecticide resistance monitoring of field-collected Anopheles gambiae s.l. populations from Jinja, eastern Uganda, identifies high levels of pyrethroid resistance

Henry Mawejje; Craig S. Wilding; Emily J. Rippon; Angela Hughes; David Weetman; Martin J. Donnelly

Insecticide resistance in the malaria vector Anopheles gambiae s.l. (Diptera: Culicidae) threatens insecticide‐based control efforts, necessitating regular monitoring. We assessed resistance in field‐collected An. gambiae s.l. from Jinja, Uganda using World Health Organization (WHO) biosassays. Only An. gambiae s.s. and An. arabiensis (≅70%) were present. Female An. gambiae exhibited extremely high pyrethroid resistance (permethrin LT50 > 2 h; deltamethrin LT50 > 5 h). Female An. arabiensis were resistant to permethrin and exhibited reduced susceptibility to deltamethrin. However, while An. gambiae were DDT resistant, An. arabiensis were fully susceptible. Both species were fully susceptible to bendiocarb and fenitrothion. Kdr 1014S has increased rapidly in the Jinja population of An. gambiae s.s. and now approaches fixation (≅95%), consistent with insecticide‐mediated selection, but is currently at a low frequency in An. arabiensis (0.07%). Kdr 1014F was also at a low frequency in An. gambiae. These frequencies preclude adequately‐powered tests for an association with phenotypic resistance. PBO synergist bioassays resulted in near complete recovery of pyrethroid susceptibility suggesting involvement of CYP450s in resistance. A small number (0.22%) of An. gambiae s.s. ×An. arabiensis hybrids were found, suggesting the possibility of introgression of resistance alleles between species. The high levels of pyrethroid resistance encountered in Jinja threaten to reduce the efficacy of vector control programmes which rely on pyrethroid‐impregnated bednets or indoor spraying of pyrethroids.

Collaboration


Dive into the Craig S. Wilding's collaboration.

Top Co-Authors

Avatar

Martin J. Donnelly

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

David Weetman

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Steen

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Janet Tawn

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Emily J. Rippon

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge