Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig Schroeder is active.

Publication


Featured researches published by Craig Schroeder.


international conference on computer graphics and interactive techniques | 2007

Volume conserving finite element simulations of deformable models

Geoffrey Irving; Craig Schroeder; Ronald Fedkiw

We propose a numerical method for modeling highly deformable nonlinear incompressible solids that conserves the volume locally near each node in a finite element mesh. Our method works with arbitrary constitutive models, is applicable to both passive and active materials (e.g. muscles), and works with simple tetrahedra without the need for multiple quadrature points or stabilization techniques. Although simple linear tetrahedra typically suffer from locking when modeling incompressible materials, our method enforces incompressibility per node (in a one-ring), and we demonstrate that it is free from locking. We correct errors in volume without introducing oscillations by treating position and velocity in separate implicit solves. Finally, we propose a novel method for treating both object contact and self-contact as linear constraints during the incompressible solve, alleviating issues in enforcing multiple possibly conflicting constraints.


international conference on computer graphics and interactive techniques | 2013

A material point method for snow simulation

Alexey Stomakhin; Craig Schroeder; Lawrence Chai; Joseph Teran; Andrew Selle

Snow is a challenging natural phenomenon to visually simulate. While the graphics community has previously considered accumulation and rendering of snow, animation of snow dynamics has not been fully addressed. Additionally, existing techniques for solids and fluids have difficulty producing convincing snow results. Specifically, wet or dense snow that has both solid- and fluid-like properties is difficult to handle. Consequently, this paper presents a novel snow simulation method utilizing a user-controllable elasto-plastic constitutive model integrated with a hybrid Eulerian/Lagrangian Material Point Method. The method is continuum based and its hybrid nature allows us to use a regular Cartesian grid to automate treatment of self-collision and fracture. It also naturally allows us to derive a grid-based semi-implicit integration scheme that has conditioning independent of the number of Lagrangian particles. We demonstrate the power of our method with a variety of snow phenomena including complex character interactions.


international conference on computer graphics and interactive techniques | 2015

The affine particle-in-cell method

Chenfanfu Jiang; Craig Schroeder; Andrew Selle; Joseph Teran; Alexey Stomakhin

Hybrid Lagrangian/Eulerian simulation is commonplace in computer graphics for fluids and other materials undergoing large deformation. In these methods, particles are used to resolve transport and topological change, while a background Eulerian grid is used for computing mechanical forces and collision responses. Particle-in-Cell (PIC) techniques, particularly the Fluid Implicit Particle (FLIP) variants have become the norm in computer graphics calculations. While these approaches have proven very powerful, they do suffer from some well known limitations. The original PIC is stable, but highly dissipative, while FLIP, designed to remove this dissipation, is more noisy and at times, unstable. We present a novel technique designed to retain the stability of the original PIC, without suffering from the noise and instability of FLIP. Our primary observation is that the dissipation in the original PIC results from a loss of information when transferring between grid and particle representations. We prevent this loss of information by augmenting each particle with a locally affine, rather than locally constant, description of the velocity. We show that this not only stably removes the dissipation of PIC, but that it also allows for exact conservation of angular momentum across the transfers between particles and grid.


international conference on computer graphics and interactive techniques | 2014

Augmented MPM for phase-change and varied materials

Alexey Stomakhin; Craig Schroeder; Chenfanfu Jiang; Lawrence Chai; Joseph Teran; Andrew Selle

In this paper, we introduce a novel material point method for heat transport, melting and solidifying materials. This brings a wider range of material behaviors into reach of the already versatile material point method. This is in contrast to best-of-breed fluid, solid or rigid body solvers that are difficult to adapt to a wide range of materials. Extending the material point method requires several contributions. We introduce a dilational/deviatoric splitting of the constitutive model and show that an implicit treatment of the Eulerian evolution of the dilational part can be used to simulate arbitrarily incompressible materials. Furthermore, we show that this treatment reduces to a parabolic equation for moderate compressibility and an elliptic, Chorin-style projection at the incompressible limit. Since projections are naturally done on marker and cell (MAC) grids, we devise a staggered grid MPM method. Lastly, to generate varying material parameters, we adapt a heat-equation solver to a material point framework.


symposium on computer animation | 2008

Two-way coupling of rigid and deformable bodies

Tamar Shinar; Craig Schroeder; Ronald Fedkiw

We propose a framework for the full two-way coupling of rigid and deformable bodies, which is achieved with both a unified time integration scheme as well as individual two-way coupled algorithms at each point of that scheme. As our algorithm is two-way coupled in every fashion, we do not require ad hoc methods for dealing with stability issues or interleaving parts of the simulation. We maintain the ability to treat the key desirable aspects of rigid bodies (e.g. contact, collision, stacking, and friction) and deformable bodies (e.g. arbitrary constitutive models, thin shells, and self-collisions). In addition, our simulation framework supports more advanced features such as proportional derivative controlled articulation between rigid bodies. This not only allows for the robust simulation of a number of new phenomena, but also directly lends itself to the design of deformable creatures with proportional derivative controlled articulated rigid skeletons that interact in a life-like way with their environment.


Journal of Computational Physics | 2011

A symmetric positive definite formulation for monolithic fluid structure interaction

Avi Robinson-Mosher; Craig Schroeder; Ronald Fedkiw

In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) 4].


symposium on computer animation | 2009

Energy stability and fracture for frame rate rigid body simulations

Jonathan Su; Craig Schroeder; Ronald Fedkiw

Our goal is to design robust algorithms that can be used for building real-time systems, but rather than starting with overly simplistic particle-based methods, we aim to modify higher-end visual effects algorithms. A major stumbling block in utilizing these visual effects algorithms for real-time simulation is their computational intensity. Physics engines struggle to fully exploit available resources to handle high scene complexity due to their need to divide those resources among many smaller time steps, and thus to obtain the maximum spatial complexity we design our algorithms to take only one time step per frame. This requires addressing both accuracy and stability issues for collisions, contact, and evolution in a manner significantly different from a typical simulation in which one can rely on shrinking the time step to ameliorate accuracy and stability issues. In this paper we present a novel algorithm for conserving both energy and momentum when advancing rigid body orientations, as well as a novel technique for clamping energy gain during contact and collisions. We also introduce a technique for fast and realistic fracture of rigid bodies using a novel collision-centered prescoring algorithm.


symposium on computer animation | 2012

Energetically consistent invertible elasticity

Alexey Stomakhin; Russell Howes; Craig Schroeder; Joseph Teran

We provide a smooth extension of arbitrary isotropic hyperelastic energy density functions to inverted configurations. This extension is designed to improve robustness for elasticity simulations with extremely large deformations and is analogous to the extension given to the first Piola-Kirchoff stress in [ITF04]. We show that our energy-based approach is significantly more robust to large deformations than the first Piola-Kirchoff fix. Furthermore, we show that the robustness and stability of a hyperelastic model can be predicted from a characteristic contour, which we call its primary contour. The extension to inverted configurations is defined via extrapolation from a convex threshold surface that lies in the uninverted portion of the principal stretches space. The extended hyperelastic energy density yields continuous stress and unambiguous stress derivatives in all inverted configurations, unlike in [TSIF05]. We show that our invertible energy-density-based approach outperforms the popular hyperelastic corotated model, and we also show how to use the primary contour methodology to improve the robustness of this model to large deformations.


IEEE Transactions on Visualization and Computer Graphics | 2015

Optimization Integrator for Large Time Steps

Theodore F. Gast; Craig Schroeder; Alexey Stomakhin; Chenfanfu Jiang; Joseph Teran

Practical time steps in todays state-of-the-art simulators typically rely on Newtons method to solve large systems of nonlinear equations. In practice, this works well for small time steps but is unreliable at large time steps at or near the frame rate, particularly for difficult or stiff simulations. We show that recasting backward Euler as a minimization problem allows Newtons method to be stabilized by standard optimization techniques with some novel improvements of our own. The resulting solver is capable of solving even the toughest simulations at the 24Hz frame rate and beyond. We show how simple collisions can be incorporated directly into the solver through constrained minimization without sacrificing efficiency. We also present novel penalty collision formulations for self collisions and collisions against scripted bodies designed for the unique demands of this solver. Finally, we show that these techniques improve the behavior of Material Point Method (MPM) simulations by recasting it as an optimization problem.


international conference on computer graphics and interactive techniques | 2016

Drucker-prager elastoplasticity for sand animation

Gergely Klár; Theodore F. Gast; Andre Pradhana; Chuyuan Fu; Craig Schroeder; Chenfanfu Jiang; Joseph Teran

We simulate sand dynamics using an elastoplastic, continuum assumption. We demonstrate that the Drucker-Prager plastic flow model combined with a Hencky-strain-based hyperelasticity accurately recreates a wide range of visual sand phenomena with moderate computational expense. We use the Material Point Method (MPM) to discretize the governing equations for its natural treatment of contact, topological change and history dependent constitutive relations. The Drucker-Prager model naturally represents the frictional relation between shear and normal stresses through a yield stress criterion. We develop a stress projection algorithm used for enforcing this condition with a non-associative flow rule that works naturally with both implicit and explicit time integration. We demonstrate the efficacy of our approach on examples undergoing large deformation, collisions and topological changes necessary for producing modern visual effects.

Collaboration


Dive into the Craig Schroeder's collaboration.

Top Co-Authors

Avatar

Joseph Teran

University of California

View shared research outputs
Top Co-Authors

Avatar

Alexey Stomakhin

Walt Disney Animation Studios

View shared research outputs
Top Co-Authors

Avatar

Chenfanfu Jiang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Selle

Walt Disney Animation Studios

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell Howes

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence Chai

Walt Disney Animation Studios

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge