Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig Stroud is active.

Publication


Featured researches published by Craig Stroud.


Journal of Geophysical Research | 2001

Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site during the 1999 Southern Oxidants Study

Craig Stroud; James M. Roberts; Paul D. Goldan; William C. Kuster; P. C. Murphy; E. J. Williams; D. Hereid; D. D. Parrish; Donna Sueper; Michael K. Trainer; F. C. Fehsenfeld; Eric C. Apel; Daniel D. Riemer; B. Wert; Bruce Henry; Alan Fried; Monica Martinez-Harder; H. Harder; William H. Brune; Guiying Li; H. Xie; V. Young

Isoprene (ISOP) and its oxidation products, methacrolein (MACR) and methyl vinyl ketone (MVK), were measured at an urban forested site in Nashville, Tennessee, as part of the 1999 Southern Oxidants Study (SOS). Hourly observations were performed at Cornelia Fort Airpark for a 4 week period between June 13 and July 14. At the midday photochemical peak (1200 local standard time, LST), average mixing ratios of isoprene, MACR, and MVK were 410 parts per trillion by volume (pptv), 240 pptv, and 430 pptv, respectively. Median isoprene, MACR, and MVK mixing ratios were 400 pptv, 200 pptv, and 360 pptv, respectively, at 1200 LST. An emissions inventory calculation for Davidson County, encompassing Nashville, suggests that MACR and MVK were produced predominately from isoprene oxidation rather than direct combustion emissions. The observations are compared with results from two chemical models: a simple sequential reaction scheme and a one-dimensional (1-D) numerical box model. The daytime ratios of MVK/ISOP and MACR/ISOP varied in a systematic manner and can be reproduced by the analytical solution of the sequential reaction scheme. Air masses with more photochemically aged isoprene were observed during SOS 1999 at Cornelia Fort (0.3-1.6 hours) compared to the SOS 1990 canopy study at Kinterbish (0.1-0.6 hours). This is consistent with the proximity of the tower inlets to the forest canopies during both campaigns. Isoprene had a chemical lifetime of 20 min at the average observed midday HO mixing ratio of 8 x 10 6 molecules/cm 3 . As a result, significant conversion of isoprene to its oxidation products was observed on the timescale of transport from the dense forest canopies surrounding Nashville. The systematic diurnal behavior in the MVK/MACR ratio can also be simulated with a 1-D photochemical box model. General agreement between the observations of MACR and MVK during SOS 1999 with the two chemical models suggests we have a comprehensive understanding of the first few stages of isoprene oxidation in this urban forested environment.


Journal of the Atmospheric Sciences | 2007

Cloud activating properties of aerosol observed during CELTIC

Craig Stroud; Athanasios Nenes; Jose L. Jimenez; P. F. DeCarlo; J. Alex Huffman; Roelof T. Bruintjes; E. Nemitz; A. E. Delia; D. W. Toohey; Alex Guenther; Sreela Nandi

Measurements of aerosol size distribution, chemical composition, and cloud condensation nuclei (CCN) concentration were performed during the Chemical Emission, Loss, Transformation, and Interactions with Canopies (CELTIC) field program at Duke Forest in North Carolina. A kinetic model of the cloud activation of ambient aerosol in the chamber of the CCN instrument was used to perform an aerosol–CCN closure study. This study advances prior investigations by employing a novel fitting algorithm that was used to integrate scanning mobility particle sizer (SMPS) measurements of aerosol number size distribution and aerosol mass spectrometer (AMS) measurements of the mass size distribution for sulfate, nitrate, ammonium, and organics into a single, coherent description of the ambient aerosol in the size range critical to aerosol activation (around 100-nm diameter). Three lognormal aerosol size modes, each with a unique internally mixed composition, were used as input into the kinetic model. For the two smaller size modes, which control CCN number concentration, organic aerosol mass fractions for the defined cases were between 58% and 77%. This study is also unique in that the water vapor accommodation coefficient was estimated based on comparing the initial timing for CCN activation in the instrument chamber with the activation predicted by the kinetic model. The kinetic model overestimated measured CCN concentrations, especially under polluted conditions. Prior studies have attributed a positive model bias to an incomplete understanding of the aerosol composition, especially the role of organics in the activation process. This study shows that including measured organic mass fractions with an assumed organic aerosol speciation profile (pinic acid, fulvic acid, and levoglucosan) and an assumed organic aerosol solubility of 0.02 kg kg 1 still resulted in a significant model positive bias for polluted case study periods. The slope and y intercept for the CCN predicted versus CCN observed regression was found to be 1.9 and 180 cm 3 , respectively. The overprediction generally does not exceed uncertainty limits but is indicative that a bias exists in the measurements or application of model. From this study, uncertainties in the particle number and mass size distributions as the cause for the model bias can be ruled out. The authors are also confident that the model is including the effects of growth kinetics on predicted activated number. However, one cannot rule out uncertainties associated with poorly characterized CCN measurement biases, uncertainties in assumed organic solubility, and uncertainties in aerosol mixing state. Sensitivity simulations suggest that assuming either an insoluble organic fraction or external aerosol mixing were both sufficient to reconcile the model bias.


Environmental Science & Technology | 2012

Are Emissions of Black Carbon from Gasoline Vehicles Underestimated? Insights from Near and On-Road Measurements

John Liggio; Mark Gordon; Gregory J. Smallwood; Shao-Meng Li; Craig Stroud; Ralf M. Staebler; Gang Lu; Patrick K. H. Lee; Brett Taylor; Jeffrey R. Brook

Measurements of black carbon (BC) with a high-sensitivity laser-induced incandescence (HS-LII) instrument and a single particle soot photometer (SP2) were conducted upwind, downwind, and while driving on a highway dominated by gasoline vehicles. The results are used with concurrent CO(2) measurements to derive fuel-based BC emission factors for real-world average fleet and heavy-duty diesel vehicles separately. The derived emission factors from both instruments are compared, and a low SP2 bias (relative to the HS-LII) is found to be caused by a BC mass mode diameter less than 75 nm, that is most prominent with the gasoline fleet but is not present in the heavy-duty diesel vehicle exhaust on the highway. Results from both the LII and the SP2 demonstrate that the BC emission factors from gasoline vehicles are at least a factor of 2 higher than previous North American measurements, and a factor of 9 higher than currently used emission inventories in Canada, derived with the MOBILE 6.2C model. Conversely, the measured BC emission factor for heavy-duty diesel vehicles is in reasonable agreement with previous measurements. The results suggest that greater attention must be paid to black carbon from gasoline engines to obtain a full understanding of the impact of black carbon on air quality and climate and to devise appropriate mitigation strategies.


Nature | 2016

Oil sands operations as a large source of secondary organic aerosols

John Liggio; Shao-Meng Li; Katherine Hayden; Youssef M. Taha; Craig Stroud; Andrea Darlington; Brian D. Drollette; Mark Gordon; Patrick A. Lee; Peter Liu; Amy Leithead; Samar G. Moussa; Danny Wang; Jason O’Brien; Richard L. Mittermeier; Jeffrey R. Brook; Gang Lu; Ralf M. Staebler; Yuemei Han; Travis W. Tokarek; Hans D. Osthoff; Paul A. Makar; Junhua Zhang; Desiree L. Plata; D. R. Gentner

Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.


Bulletin of the American Meteorological Society | 2005

Coupling between Land Ecosystems and the Atmospheric Hydrologic Cycle through Biogenic Aerosol Pathways

M. C. Barth; Joseph P. McFadden; Jielun Sun; Christine Wiedinmyer; Patrick Y. Chuang; Don R. Collins; Robert J. Griffin; Michael P. Hannigan; Thomas Karl; Si Wan Kim; Sonia Lasher-Trapp; Samuel Levis; Marcy Litvak; Natalie M. Mahowald; Katharine F. Moore; Sreela Nandi; E. Nemitz; Athanasios Nenes; Mark J. Potosnak; Timothy M. Raymond; James N. Smith; Christopher J. Still; Craig Stroud

AUTHOR AFFILIATIONS: BARTH, SUN, WIEDINMYER, KARL, KIM, LEVIS, MAHOWALD, MOORE, NANDI, NEMITZ, POTOSNAK, SMITH, AND STROUD—National Center for Atmospheric Research, Boulder, Colorado; MCFADDEN—University of Minnesota, Saint Paul, Minnesota; CHUANG—University of California, Santa Cruz, Santa Cruz, California; COLLINS—Texas A&M University, College Station, Texas; GRIFFIN—University of New Hampshire, Durham, New Hampshire; HANNIGAN—University of Colorado, Boulder, Colorado; LASHER-TRAPP—Purdue University, West Lafayette, Indiana; LITVAK—University of Texas, Austin, Texas; NENES—Georgia Institute of Technology, Atlanta, Georgia; RAYMOND—Bucknell University, Lewisburg, Pennsylvania; STILL—University of California, Santa Barbara, Santa Barbara, California CORRESPONDING AUTHOR: Dr. Mary Barth, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307 E-mail: [email protected]


Environmental Science & Technology | 2011

Depression of Ammonia Uptake to Sulfuric Acid Aerosols by Competing Uptake of Ambient Organic Gases

John Liggio; Shao-Meng Li; A. L. Vlasenko; Craig Stroud; Paul A. Makar

The neutralization of acidic aerosols by ammonia has been studied through experiments which combine ambient air with laboratory generated sulfuric acid aerosol. Results indicated that acidic aerosol mixed with organic free air and ammonia was neutralized on a time scale<1 min, consistent with expectations. However, in the presence of ambient organic gases and ammonia, the rate of aerosol neutralization is significantly reduced. This reduction in ammonia uptake was concurrent with an increase in the amount of particle phase organics. A steady state in the NH4+/SO4(2-) in the presence of organic gases was established on time scales of 10 min to several hours, corresponding to NH3 uptake coefficients in the range of 4×10(-3)-2×10(-4). The degree to which neutralization was slowed was dependent upon the initial ammonia concentration and the organic mass added to the aerosols. These results suggest that inorganic equilibrium thermodynamic models may overestimate the rate of ammonia uptake and that ambient particles may remain acidic for longer than previously expected.


Tellus B | 2011

Effects of black carbon aging on air quality predictions and direct radiative forcing estimation

Sung Hoon Park; S. L. Gong; V. S. Bouchet; Weixi Gong; P. A. Makar; M. D. Moran; Craig Stroud; J. Zhang

An aging scheme for black carbon (BC) aerosol was implemented into a regional air-quality forecast model to study the impact of BC aging on air quality predictions. Three different assumptions for the mixing state of BC—external mixture, internal mixture and gradual aging—were used to simulate the distribution of BC particles over North America in April 2002. Cloud –condensation nuclei number and BC wet deposition rate increased significantly and BC mass column loading decreased as a result of BC aging. With the gradual aging process incorporated into the model, the comparison of ground level BC concentration predictions with surface observations was slightly improved. Estimation of the average direct radiative forcing of BC over the spatial domain of this study showed that the factor of direct forcing enhancement by BC aging was much smaller than the mixing state effect factor. The effect of increased wet deposition due to aging compensated partially for the effect of increased absorbance suggesting that the change in the hygroscopic properties of BC due to aging must be taken into account to quantify accurately the effect of BC aging on climate.


Journal of Geophysical Research | 2001

Alkyl nitrate measurements during STERAO 1996 and NARE 1997: Intercomparison and survey of results

Craig Stroud; James M. Roberts; J. Williams; Paul D. Goldan; William C. Kuster; Thomas B. Ryerson; Donna Sueper; D. D. Parrish; M. Trainer; F. C. Fehsenfeld; F. Flocke; S. Schauffler; V. Stroud; Elliot Atlas

Alkyl nitrates were measured over the northeastern plains of Colorado during the Stratospheric Tropospheric Exchange: Radiation, Aerosols and Ozone (STERAO) 1996 campaign and over the North Atlantic during the North Atlantic Regional Experiment (NARE) 1997. Alkyl nitrate measurements were performed by two different laboratories enabling an intercomparison of analytical techniques. A weighted bivariate linear regression analysis of comparable samples (National Oceanic and Atmospheric Administration versus National Center for Atmospheric Research) for the four alkyl nitrates measured by both techniques (2-propyl nitrate, 1-propyl nitrate, 2-butyl nitrate, and 3-pentyl nitrate) suggests there is neither a significant calibration difference nor a systematic offset. The precision of the measurements is indicated by the scatter in the correlations. Good precision is observed for the 2-butyl nitrate measurements (square of the correlation coefficient, R2 = 0.90). However, relatively small values of R2 and relatively large uncertainties in the determination of the slopes and intercepts (2σ confidence intervals) for 2-propyl nitrate, 1-propyl nitrate, and 3-pentyl nitrate suggest significant imprecision when compared to ambient mixing ratios for at least one of the measurement techniques. Vertical profiles during NARE 1997 show high levels of alkyl nitrates in well-defined photochemical pollution layers of continental origin. A comparison of alkyl nitrate to hydrocarbon ratios with a sequential reaction scheme model suggests our understanding of C4–C5 alkyl nitrate photochemistry is adequate to reproduce the observations. Air masses with larger ratios of alkyl nitrate to hydrocarbons were observed during NARE 1997 than STERAO 1996, consistent with the NARE 1997 measurements being in the more remote North Atlantic. These results suggest that information related to the photochemical age of an air mass can be derived from alkyl nitrate to hydrocarbon ratios.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Differences between measured and reported volatile organic compound emissions from oil sands facilities in Alberta, Canada.

Shao-Meng Li; Amy Leithead; Samar G. Moussa; John Liggio; Michael D. Moran; Daniel Wang; Katherine Hayden; Andrea Darlington; Mark Gordon; Ralf M. Staebler; Paul A. Makar; Craig Stroud; Robert McLaren; Peter S. Liu; Jason O’Brien; Richard L. Mittermeier; Junhua Zhang; George Marson; Stewart G. Cober; Mengistu Wolde; Jeremy J. B. Wentzell

Significance Validation of volatile organic compound (VOC) emission reports, especially from large industrial facilities, is rarely attempted. Given uncertainties in emission reports, their evaluation and validation will build confidence in emission inventories. It is shown that a top-down approach can provide measurement-based emission rates for such emission validation. Comparisons with emission reports from Alberta oil sands surface mining facilities revealed significant differences in VOC emissions between top-down emissions rates and reports. Comparison with VOC species emission reports using currently accepted estimation methods indicates that emissions were underestimated in the reports for most species. This exercise shows that improvements in the accuracy and completeness of emissions estimates from complex facilities would enhance their application to assessing the impacts of such emissions. Large-scale oil production from oil sands deposits in Alberta, Canada has raised concerns about environmental impacts, such as the magnitude of air pollution emissions. This paper reports compound emission rates (E) for 69–89 nonbiogenic volatile organic compounds (VOCs) for each of four surface mining facilities, determined with a top-down approach using aircraft measurements in the summer of 2013. The aggregate emission rate (aE) of the nonbiogenic VOCs ranged from 50 ± 14 to 70 ± 22 t/d depending on the facility. In comparison, equivalent VOC emission rates reported to the Canadian National Pollutant Release Inventory (NPRI) using accepted estimation methods were lower than the aE values by factors of 2.0 ± 0.6, 3.1 ± 1.1, 4.5 ± 1.5, and 4.1 ± 1.6 for the four facilities, indicating underestimation in the reported VOC emissions. For 11 of the combined 93 VOC species reported by all four facilities, the reported emission rate and E were similar; but for the other 82 species, the reported emission rate was lower than E. The median ratio of E to that reported for all species by a facility ranged from 4.5 to 375 depending on the facility. Moreover, between 9 and 53 VOCs, for which there are existing reporting requirements to the NPRI, were not included in the facility emission reports. The comparisons between the emission reports and measurement-based emission rates indicate that improvements to VOC emission estimation methods would enhance the accuracy and completeness of emission estimates and their applicability to environmental impact assessments of oil sands developments.


Journal of Geophysical Research | 2014

Rapid organic aerosol formation downwind of a highway: Measured and model results from the FEVER study

Craig Stroud; John Liggio; Jie Zhang; Mark Gordon; Ralf M. Staebler; Paul A. Makar; Junhua Zhang; Shao-Meng Li; C. Mihele; G. Lu; Daniel K. Wang; Jeremy J. B. Wentzell; Jeffrey R. Brook; Greg J. Evans

The Fast Evolution of Vehicle Emissions from Roadway (FEVER) study was undertaken to strategically measure pollutant gradients perpendicular to a major highway north of Toronto, Canada. A case study period was analyzed when there was an average perpendicular wind direction. Two independent, fast response measurements were used to infer rapid organic aerosol (OA) growth on a spatial scale from 34 m to 285 m at the same time as a decrease was observed in the mixing ratio of primary emitted species, such as CO2 and NOx. An integrated organic gas and particle sampler also showed that near the highway, the aerosol had a larger semivolatile fraction than lower volatile fraction, but over a relatively short distance downwind of the highway, the aerosol transformed to being more low volatile with the change being driven by both evaporation of semivolatile and production of lower volatile organic aerosol. A new 1-D column Lagrangian atmospheric chemistry model was developed to help interpret the measured increase in the ∆OA/∆CO2 curve from 34 m to 285 m downwind of highway, where the ∆ refers to background-corrected concentrations. The model was sensitive to the assumptions for semivolatile organic compounds (SVOCs). Different combinations of SVOC emissions and background mixing ratios were able to yield similar model curves and reproduce the observations. Future measurements of total gas-phase SVOC in equilibrium with aerosol both upwind and downwind of the highway would be helpful to constrain the model.

Collaboration


Dive into the Craig Stroud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Moran

Meteorological Service of Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge