Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig Sykes is active.

Publication


Featured researches published by Craig Sykes.


PLOS Pathogens | 2014

Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART

Paul W. Denton; Julie M. Long; Stephen W. Wietgrefe; Craig Sykes; Rae Ann Spagnuolo; Olivia D. Snyder; Katherine E. Perkey; Nancie M. Archin; Shailesh K. Choudhary; Kuo Yang; Michael G. Hudgens; Ira Pastan; Ashley T. Haase; Angela D. M. Kashuba; Edward A. Berger; David M. Margolis; J. Victor Garcia

Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA+ cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies.


The Journal of Infectious Diseases | 2016

A Translational Pharmacology Approach to Predicting Outcomes of Preexposure Prophylaxis Against HIV in Men and Women Using Tenofovir Disoproxil Fumarate With or Without Emtricitabine.

Mackenzie L. Cottrell; Kuo H. Yang; Heather M.A. Prince; Craig Sykes; Nicole White; Stephanie Malone; Evan S. Dellon; Ryan D. Madanick; Nicholas J. Shaheen; Michael G. Hudgens; Jacob Wulff; Kristine B. Patterson; Julie A. E. Nelson; Angela D. M. Kashuba

BACKGROUND A novel translational pharmacology investigation was conducted by combining an in vitro efficacy target with mucosal tissue pharmacokinetic (PK) data and mathematical modeling to determine the number of doses required for effective human immunodeficiency virus (HIV) preexposure prophylaxis (PrEP). METHODS A PK/pharmacodynamic (PD) model was developed by measuring mucosal tissue concentrations of tenofovir, emtricitabine, their active metabolites (tenofovir diphosphate [TFVdp] and emtricitabine triphosphate [FTCtp], respectively), and competing endogenous nucleotides (dATP and dCTP) in 47 healthy women. TZM-bl and CD4(+) T cells were used to identify 90% effective concentration (EC90) ratios of TFVdp to dATP and FTCtp to dCTP (alone and in combination) for protection against HIV. Monte-Carlo simulations were then performed to identify minimally effective dosing strategies to protect lower female genital tract and colorectal tissues. RESULTS The colorectal TFVdp concentration was 10 times higher than that in the lower female genital tract, whereas concentrations of endogenous nucleotides were 7-11 times lower. Our model predicted that ≥98% of the population achieved protective mucosal tissue exposure by the third daily dose of tenofovir disoproxil fumarate plus emtricitabine. However, a minimum adherence to 6 of 7 doses/week (85%) was required to protect lower female genital tract tissue from HIV, while adherence to 2 of 7 doses/week (28%) was required to protect colorectal tissue. CONCLUSIONS This model is predictive of recent PrEP trial results in which 2-3 doses/week was 75%-90% effective in men but ineffective in women. These data provide a novel approach for future PrEP investigations that can optimize clinical trial dosing strategies.


Antimicrobial Agents and Chemotherapy | 2015

Mass Spectrometry Imaging Reveals Heterogeneous Efavirenz Distribution within Putative HIV Reservoirs

Corbin G. Thompson; Mark T. Bokhart; Craig Sykes; Lourdes Adamson; Yuri Fedoriw; Paul A. Luciw; David C. Muddiman; Angela D. M. Kashuba; Elias P. Rosen

ABSTRACT Persistent HIV replication within active viral reservoirs may be caused by inadequate antiretroviral penetration. Here, we used mass spectrometry imaging with infrared matrix-assisted laser desorption–electrospray ionization to quantify the distribution of efavirenz within tissues from a macaque dosed orally to a steady state. Intratissue efavirenz distribution was heterogeneous, with the drug concentrating in the lamina propria of the colon, the primary follicles of lymph nodes, and the brain gray matter. These are the first imaging data of an antiretroviral drug in active viral reservoirs.


Journal of Acquired Immune Deficiency Syndromes | 2013

Tenofovir Diphosphate and Emtricitabine Triphosphate Concentrations in Blood Cells Compared with Isolated Peripheral Blood Mononuclear Cells: A New Measure of Antiretroviral Adherence?

Jessica L. Adams; Craig Sykes; Prema Menezes; Heather M.A. Prince; Kristine B. Patterson; Katrien Fransen; Tania Crucitti; Irith De Baetselier; Lut Van Damme; Angela D. M. Kashuba

Background:The active metabolites of tenofovir (TFV) and emtricitabine (FTC) in peripheral blood mononuclear cells (PBMCs) have been used as markers of long-term antiretroviral (ARV) adherence. However, the process of isolating PBMCs is expensive, complex, and not feasible in many settings. We compared concentrations of TFV-diphosphate (TFV-DP) and FTC-triphosphate (FTC-TP) in the upper layer packed cells (ULPCs) obtained after whole blood centrifugation to isolated PBMCs as a possible alternative marker of adherence. Methods:Ten HIV+ adults with HIV RNA <50 copies/mL on a TDF/FTC-containing regimen provided 5 paired PBMC and ULPC samples over 6 hours. TFV-DP and FTC-TP concentrations were analyzed by liquid chromatography/mass spectrometry. Partial areas under the curve were calculated using noncompartmental methods and Spearman Rank Correlations (rho) between PBMC and ULPC were determined. Results:The median (25th–75th percentile) concentration of TFV-DP in PBMCs was 143 (103–248) fmol/106 cells and in ULPC was 227 (160–394) fmol/106 cells (rho = 0.65; P < 0.0001). The concentration of FTC-TP in PBMCs was 6660 (5650–10,000) fmol/106 cells and in ULPC was 19.0 (12.0–27.8) fmol/106 cells (rho = 0.55; P < 0.0001). Compared to PBMCs, ULPC TFV-DP was 64% higher and FTC-TP was 99.7% lower. ULPC concentrations of TFV-DP and FTC-TP in one additional subject receiving a single dose of TDF/FTC were only 0.05% and 25%, of the other 10 subjects, respectively. Conclusions:ULPC concentrations significantly correlated with PBMC concentrations. Preliminary single-dose data suggest some discrimination between intermittent versus consistent dosing. ULPC concentrations of TFV-DP and FTC-TP should be further investigated as a simply collected surrogate measure of ARV adherence.


Antiviral Therapy | 2013

Single and multiple dose pharmacokinetics of dolutegravir in the genital tract of HIV-negative women

Jessica L. Adams; Kristine B. Patterson; Heather M.A. Prince; Craig Sykes; Benjamin N. Greener; Julie B. Dumond; Angela D. M. Kashuba

BACKGROUND Antiretrovirals that achieve adequate concentrations in anatomical sites of transmission are of interest for HIV prevention. A Phase I open-label pharmacokinetic (PK) study was performed to describe first dose (PK1) and steady-state (PK2) PKs of the integrase inhibitor dolutegravir (DTG) in blood plasma (BP), cervicovaginal fluid (CVF), cervical tissue (CT) and vaginal tissue (VT) in HIV type-1-negative women. METHODS A total of 8 healthy females given DTG 50 mg daily for 5-7 days had 11 paired BP and CVF samples collected over 24 h following the first dose (PK1) and multiple dosing (PK2). Each woman underwent CT and VT biopsies at 1/4 time points at PK1 and PK2 to generate composite PK profiles. DTG concentrations were analysed by validated liquid chromatography-tandem mass spectrometry methods. Non-compartmental PK analysis was performed and Spearman rank correlations determined between matrices. RESULTS BP areas under the concentration-time curve (AUCs) were similar to previous reports and concentrations remained greater than the protein-adjusted (PA) 90% inhibitory concentration (IC90) for wild-type HIV (64 ng/ml). CVF exposures were approximately 6% of BP with low inter-individual variability. CT and VT exposures were 7% of BP at PK1, and 9-10% of BP at PK2 with 94% of samples >PA-IC90. CT and VT concentrations were correlated to each other (ρ=0.70, P=0.003), and to CVF at steady state (ρ=0.52, P=0.04). Accumulation of DTG from PK1 to PK2 occurred in BP, CT and VT, but only marginally in CVF. CONCLUSIONS DTG BP PK were consistent with previously published values. CVF, CT and VT exposures were highly correlated. At PK2, DTG accumulated to a greater extent in tissue than in BP or CVF, suggesting increased tissue affinity.


Journal of the American Society for Mass Spectrometry | 2014

Mapping Antiretroviral Drugs in Tissue by IR-MALDESI MSI Coupled to the Q Exactive and Comparison with LC-MS/MS SRM Assay

Jeremy A. Barry; Guillaume Robichaud; Mark T. Bokhart; Corbin G. Thompson; Craig Sykes; Angela D. M. Kashuba; David C. Muddiman

AbstractThis work describes the coupling of the IR-MALDESI imaging source with the Q Exactive mass spectrometer. IR-MALDESI MSI was used to elucidate the spatial distribution of several HIV drugs in cervical tissues that had been incubated in either a low or high concentration. Serial sections of those analyzed by IR-MALDESI MSI were homogenized and analyzed by LC-MS/MS to quantify the amount of each drug present in the tissue. By comparing the two techniques, an agreement between the average intensities from the imaging experiment and the absolute quantities for each drug was observed. This correlation between these two techniques serves as a prerequisite to quantitative IR-MALDESI MSI. In addition, a targeted MS2 imaging experiment was also conducted to demonstrate the capabilities of the Q Exactive and to highlight the added selectivity that can be obtained with SRM or MRM imaging experiments. Fig. aᅟ


Virology | 2014

HIV pre-exposure prophylaxis: mucosal tissue drug distribution of RT inhibitor Tenofovir and entry inhibitor Maraviroc in a humanized mouse model.

Milena Veselinovic; Kuo Hsiung Yang; Jonathan LeCureux; Craig Sykes; Leila Remling-Mulder; Angela D. M. Kashuba; Ramesh Akkina

Pre-exposure prophylaxis (PrEP) strategies utilizing anti-retroviral drugs show considerable promise for HIV prevention. However there is insufficient pharmacokinetic (PK) data on drug concentrations required for protection at the relevant mucosal tissues where the infection is initiated. Here we evaluated the utility of a humanized mouse model to derive PK data on two leading drugs, the RT inhibitor Tenofovir (TFV) and CCR5 inhibitor Maraviroc (MVC). Following oral dosing, both the drugs and the intracellular active TFV-diphosphate could be detected in vaginal, rectal and intestinal tissues. The drug exposures (AUC₂₄ h) were found to be higher in vaginal tissue compared to plasma with even higher levels detected in rectal and intestinal tissues. The overall trends of drug concentrations seen in humanized mice reflect those seen in the human thus establishing the utility of this model complementing the present non-human primate (NHP) models for future pre-clinical evaluations of promising HIV PrEP drug candidates.


PLOS ONE | 2013

Quantitative Analysis of Microbicide Concentrations in Fluids, Gels and Tissues Using Confocal Raman Spectroscopy

Oranat Chuchuen; Marcus H. Henderson; Craig Sykes; Min Sung Kim; Angela D. M. Kashuba; David F. Katz

Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data. These results demonstrate that confocal Raman spectroscopy holds promise as a tool for practical, minimally invasive, label-free measurement of microbicide drug concentrations in fluids, gels and tissues.


Journal of Acquired Immune Deficiency Syndromes | 2015

Models for predicting effective HIV chemoprevention in women.

Melanie R. Nicol; Cindi W. Emerson; Heather M.A. Prince; Julie A. E. Nelson; Yuri Fedoriw; Craig Sykes; Elizabeth J. Geller; Kristine B. Patterson; Myron S. Cohen; Angela D. M. Kashuba

Objective:Model systems that rapidly identify tissue drug concentrations protective of HIV infection could streamline the development of chemoprevention strategies. Tissue models are promising, but limited concentration targets exist, and no systematic comparison to cell models or clinical studies has been performed. Design:We explored the efficacy of maraviroc (MVC) and tenofovir (TFV) for HIV prevention by comparing Emax models from TZM-bl cells to vaginal tissue explants and evaluated their predictive capabilities with a dose-challenge clinical study. Methods:HIV-1JR-CSF was used for viral challenge. Drug efficacy was assessed using a luciferase reporter assay in TZM-bl cells and real-time PCR to quantify spliced RNA in a tissue explant model. Cell and tissue concentrations of MVC, TFV, and the active metabolite tenofovir diphosphate were measured by liquid chromatography with tandem mass spectrometry and used to create Emax models of efficacy. Efficacy after a single oral dose of 600 mg MVC and 600 mg tenofovir disoproxil fumarate was predicted from cell and tissue models and confirmed in a clinical study with viral biopsy challenge postdose. Results:TFV was >10-fold and MVC >1000-fold, more potent in TZM-bl cells compared with vaginal explant tissue. In the dose-challenge study, tissues from 3 of 6 women were protected from HIV infection, which was 49% lower than predicted by TZM-bl data and 36% higher than predicted by tissue explant data. Conclusions:Comparative effective concentration data were generated for TFV and MVC in 3 HIV chemoprophylaxis models. These results provide a framework for future early investigations of antiretroviral efficacy in HIV prevention to optimize dosing strategies in clinical investigations.


Analytical Chemistry | 2016

Analysis of Antiretrovirals in Single Hair Strands for Evaluation of Drug Adherence with Infrared-Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry Imaging.

Elias P. Rosen; Corbin G. Thompson; Mark T. Bokhart; Heather M.A. Prince; Craig Sykes; David C. Muddiman; Angela D. M. Kashuba

Adherence to a drug regimen can be a strong predictor of health outcomes, and validated measures of adherence are necessary at all stages of therapy from drug development to prescription. Many of the existing metrics of drug adherence (e.g., self-report, pill counts, blood monitoring) have limitations, and analysis of hair strands has recently emerged as an objective alternative. Traditional methods of hair analysis based on LC-MS/MS (segmenting strands at ≥1 cm length) are not capable of preserving a temporal record of drug intake at higher resolution than approximately 1 month. Here, we evaluated the detectability of HIV antiretrovirals (ARVs) in hair from a range of drug classes using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) with 100 μm resolution. Infrared laser desorption of hair strands was shown to penetrate into the strand cortex, allowing direct measurement by MSI without analyte extraction. Using optimized desorption conditions, a linear correlation between IR-MALDESI ion abundance and LC-MS/MS response was observed for six common ARVs with estimated limits of detection less than or equal to 1.6 ng/mg hair. The distribution of efavirenz (EFV) was then monitored in a series of hair strands collected from HIV infected, virologically suppressed patients. Because of the role hair melanin plays in accumulation of basic drugs (like most ARVs), an MSI method to quantify the melanin biomarker pyrrole-2,3,5-tricarboxylic acid (PTCA) was evaluated as a means of normalizing drug response between patients to develop broadly applicable adherence criteria.

Collaboration


Dive into the Craig Sykes's collaboration.

Top Co-Authors

Avatar

Angela D. M. Kashuba

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Heather M.A. Prince

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Mackenzie L. Cottrell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kristine B. Patterson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nicole White

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Amanda Schauer

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Corbin G. Thompson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Elias P. Rosen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Julie B. Dumond

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Michael G. Hudgens

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge