Craig W. Benkman
University of Wyoming
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Craig W. Benkman.
BMC Genomics | 2010
Thomas L. Parchman; Katherine S Geist; Johan A Grahnen; Craig W. Benkman; C. Alex Buerkle
BackgroundMassively parallel sequencing of cDNA is now an efficient route for generating enormous sequence collections that represent expressed genes. This approach provides a valuable starting point for characterizing functional genetic variation in non-model organisms, especially where whole genome sequencing efforts are currently cost and time prohibitive. The large and complex genomes of pines (Pinus spp.) have hindered the development of genomic resources, despite the ecological and economical importance of the group. While most genomic studies have focused on a single species (P. taeda), genomic level resources for other pines are insufficiently developed to facilitate ecological genomic research. Lodgepole pine (P. contorta) is an ecologically important foundation species of montane forest ecosystems and exhibits substantial adaptive variation across its range in western North America. Here we describe a sequencing study of expressed genes from P. contorta, including their assembly and annotation, and their potential for molecular marker development to support population and association genetic studies.ResultsWe obtained 586,732 sequencing reads from a 454 GS XLR70 Titanium pyrosequencer (mean length: 306 base pairs). A combination of reference-based and de novo assemblies yielded 63,657 contigs, with 239,793 reads remaining as singletons. Based on sequence similarity with known proteins, these sequences represent approximately 17,000 unique genes, many of which are well covered by contig sequences. This sequence collection also included a surprisingly large number of retrotransposon sequences, suggesting that they are highly transcriptionally active in the tissues we sampled. We located and characterized thousands of simple sequence repeats and single nucleotide polymorphisms as potential molecular markers in our assembled and annotated sequences. High quality PCR primers were designed for a substantial number of the SSR loci, and a large number of these were amplified successfully in initial screening.ConclusionsThis sequence collection represents a major genomic resource for P. contorta, and the large number of genetic markers characterized should contribute to future research in this and other pines. Our results illustrate the utility of next generation sequencing as a basis for marker development and population genomics in non-model species.
Molecular Ecology | 2012
Thomas L. Parchman; Zachariah Gompert; Joann Mudge; Faye D. Schilkey; Craig W. Benkman; C. Alex Buerkle
Pine cones that remain closed and retain seeds until fire causes the cones to open (cone serotiny) represent a key adaptive trait in a variety of pine species. In lodgepole pine, there is substantial geographical variation in serotiny across the Rocky Mountain region. This variation in serotiny has evolved as a result of geographically divergent selection, with consequences that extend to forest communities and ecosystems. An understanding of the genetic architecture of this trait is of interest owing to the wide‐reaching ecological consequences of serotiny and also because of the repeated evolution of the trait across the genus. Here, we present and utilize an inexpensive and time‐effective method for generating population genomic data. The method uses restriction enzymes and PCR amplification to generate a library of fragments that can be sequenced with a high level of multiplexing. We obtained data for more than 95 000 single nucleotide polymorphisms across 98 serotinous and nonserotinous lodgepole pines from three populations. We used a Bayesian generalized linear model (GLM) to test for an association between genotypic variation at these loci and serotiny. The probability of serotiny varied by genotype at 11 loci, and the association between genotype and serotiny at these loci was consistent in each of the three populations of pines. Genetic variation across these 11 loci explained 50% of the phenotypic variation in serotiny. Our results provide a first genome‐wide association map of serotiny in pines and demonstrate an inexpensive and efficient method for generating population genomic data.
The American Naturalist | 1999
Craig W. Benkman
Asymmetrical competition determines which of two seed predators drives the evolution of lodgepole pine (Pinus contorta ssp. latifolia) cones. Red squirrels (Tamiasciurus hudsonicus) are effective preemptive competitors in lodgepole pine forests so that red crossbills (Loxia curvirostra) are uncommon and selection from Tamiasciurus drives cone evolution. When Tamiasciurus are absent, crossbills increase in abundance and coevolve in an evolutionary arms race with pine. Similarly, Tamiasciurus alters the evolutionary trajectories of large‐seeded pines, many of which rely on birds (Corvidae) for their seed dispersal. Populations therefore exhibit a selection mosaic with coevolutionary hot spots. In the coevolutionary hot spots, divergent selection on crossbills potentially leads to reproductive isolation and speciation. This results in a subsequent reduction in the geographic mosaic but diversifies the adaptive landscape on which crossbills have radiated. Thus, divergent selection is a double‐edged sword. Divergent selection is critical in creating a selection mosaic but erodes the selection mosaic when it promotes reproductive isolation and speciation.
Evolution | 2001
Craig W. Benkman; William C. Holimon; Julie W. Smith
Abstract The geographic mosaic theory of coevolution posits that the form of selection between interacting species varies across a landscape with coevolution important and active in some locations (i.e., coevolutionary hotspots) but not in others (i.e., coevolutionary coldspots). We tested the hypothesis that the presence of red squirrels (Tamiasciurus hudsonicus) affects the occurrence of coevolution between red crossbills (Loxia curvirostra complex) and Rocky Mountain lodgepole pine (Pinus contorta ssp. latifolia) and thereby provides a mechanism giving rise to a geographic mosaic of selection. Red squirrels are the predominant predispersal seed predator and selective agent on lodgepole pine cones. However, in four isolated mountain ranges east and west of the Rocky Mountains, red squirrels are absent and red crossbills are the main predispersal seed predator. These isolated populations of pine have apparently evolved without Tamiasciurus for about 10,000 to 12,000 years. Based on published morphological, genetic, and paleobotanical studies, we infer that cone traits in these isolated populations that show parallel differences from cones in the Rocky Mountains have changed in parallel. We used data on crossbill and conifer cone morphology and feeding preferences and efficiency to detect whether red crossbills and lodgepole pine exhibit reciprocal adaptations, which would imply coevolution. Cone traits that act to deter Tamiasciurus and result in high ratios of cone mass to seed mass were less developed in the isolated populations. Cone traits that act to deter crossbills include larger and thicker scales and perhaps increased overlap between successive scales and were enhanced in the isolated populations. In the larger, isolated mountain ranges crossbills have evolved deeper, shorter, and therefore more decurved bills to exploit these cones. This provides crossbills with higher feeding rates, and the change in bill shape has improved efficiency by reducing the concomitant increases in body mass and daily energy expenditures that would have resulted if only bill size had increased. These parallel adaptations and counter adaptations in red crossbills and lodgepole pine are interpreted as reciprocal adaptations and imply that these crossbills and pine are in coevolutionary arms races where red squirrels are absent (i.e., coevolutionary hotspots) but not where red squirrels are present (i.e., coevolutionary coldspots).
Evolution | 2003
Craig W. Benkman
Abstract Knowledge of how phenotype influences fitness is necessary if we are to understand the basis of natural selection and how natural selection contributes to adaptive radiations. Here I quantify selection on a wild population of red crossbills (Loxia curvirostra complex) in the South Hills, Idaho. Bill depth is the target of selection and selection on bill depth is stabilizing. I then show how fitness is related to both bill depth and performance. I use these and previously published relationships to estimate a fitness surface for five species of red crossbills that are part of an ongoing adaptive radiation in western North America. The fitness surface for crossbills has distinct peaks and valleys, with each crossbill species residing on or very near the summits. This work strongly supports a key tenet of the ecological theory of adaptive radiations; namely, divergent selection for utilizing alternative resources is the ultimate cause of adaptive radiations.
The American Naturalist | 2003
Craig W. Benkman; Thomas L. Parchman; Amanda Favis; Adam M. Siepielski
Few studies have shown both reciprocal selection and reciprocal adaptations for a coevolving system in the wild. The goal of our study was to determine whether the patterns of selection on Rocky Mountain lodgepole pine (Pinus contorta spp. latifolia) and red crossbills (Loxia curvirostra complex) were concordant with earlier published evidence of reciprocal adaptations in lodgepole pine and crossbills on isolated mountain ranges in the absence of red squirrels (Tamiasciurus hudsonicus). We found that selection (directional) by crossbills on lodgepole pine where Tamiasciurus are absent was divergent from the selection (directional) exerted by Tamiasciurus on lodgepole pine. This resulted in divergent selection between areas with and without Tamiasciurus that was congruent with the geographic patterns of cone variation. In the South Hills, Idaho, where Tamiasciurus are absent and red crossbills are thought to be coevolving with lodgepole pine, crossbills experienced stabilizing selection on bill size, with cone structure as the agent of selection. These results show that crossbills and lodgepole pine exhibit reciprocal adaptations in response to reciprocal selection, and they provide insight into the traits mediating and responding to selection in a coevolutionary arms race.
The American Naturalist | 2007
Julie W. Smith; Craig W. Benkman
We examined three ecological factors potentially causing premating reproductive isolation to determine whether divergent selection as a result of coevolution between South Hills crossbills (Loxia curvirostra complex) and Rocky Mountain lodgepole pine (Pinus contorta latifolia) promotes ecological speciation. One factor was habitat isolation arising because of enhanced seed defenses of lodgepole pine in the South Hills. This caused the crossbill call types (morphologically and vocally differentiated forms) adapted to alternative resources to be rare. Another occurred when crossbills of other call types moved into the South Hills late in the breeding season and feeding conditions were deteriorating so that relatively few non–South Hills crossbills bred (“immigrant infecundity”). Finally, among those crossbills that bred, pairing was strongly assortative by call type (behavioral isolation). Total reproductive isolation between South Hills crossbills and the two other crossbills most common in the South Hills (call types 2 and 5) summed to .9975 and .9998, respectively, on a scale of 0 (no reproductive isolation) to 1 (complete reproductive isolation). These extremely high levels of reproductive isolation indicate that the divergent selection resulting from the coevolutionary arms race between crossbills and lodgepole pine is causing the South Hills crossbill to speciate.
Evolution | 2002
Thomas L. Parchman; Craig W. Benkman
Abstract Coevolution is increasingly recognized as an important process structuring geographic variation in the form of selection for many populations. Here we consider the importance of a geographic mosaic of coevolution to patterns of crossbill (Loxia) diversity in the northern boreal forests of North America. We examine the relationships between geographic variation in cone morphology, bill morphology, and feeding performance to test the hypothesis that, in the absence of red squirrels (Tamiasciurus hudsonicus), black spruce (Picea mariana) has lost seed defenses directed at Tamiasciurus and that red crossbills (L. curvirostra) and black spruce have coevolved in an evolutionary arms race. Comparisons of cone morphology and several indirect lines of evidence suggest that black spruce has evolved defenses in response to Tamiasciurus on mainland North America but has lost these defenses on Newfoundland. Cone traits that deter crossbills, including thicker scales that require larger forces to separate, are elevated in black spruce on Newfoundland, and larger billed crossbills have higher feeding performances than smaller billed crossbills on black spruce cones from Newfoundland. These results imply that the large bill of the Newfoundland crossbill (L. c. percna) evolved as an adaptation to the elevated cone defenses on Newfoundland and that crossbills and black spruce coevolved in an evolutionary arms race on Newfoundland during the last 9000 years since glaciers retreated. On the mainland where black spruce is not as well defended against crossbills, the small‐billed white‐winged crossbill (L. leucoptera leucoptera) is more efficient and specializes on seeds in the partially closed cones. Finally, reciprocal adaptations between crossbills and conifers are replicated in black spruce and Rocky Mountain lodgepole pine (Pinus contorta ssp. latifolia), with coevolution most pronounced in isolated populations where Tamiasciurus are absent as a competitor. This study further supports the role of Tamiasciurus in determining the selection mosaic for crossbills and suggests that a geographic mosaic of coevolution has been a prominent factor underlying the diversification of North American crossbills.
Molecular Ecology | 2006
Thomas L. Parchman; Craig W. Benkman; Seth C. Britch
Incipient species groups or young adaptive radiations such as crossbills (Aves: Loxia) present the opportunity to investigate directly the processes occurring during speciation. New World crossbills include white‐winged crossbills (Loxia leucoptera), Hispaniolan crossbills (Loxia megaplaga), and red crossbills (Loxia curvirostra complex), the last of which is comprised of at least nine morphologically and vocally differentiated forms (‘call types’) where divergent natural selection for specialization on different conifer resources has been strongly implicated as driving diversification. Here we use amplified fragment length polymorphism (AFLP) markers to investigate patterns of genetic variation across populations, call types, and species of New World crossbills. Tree‐based analyses using 440 AFLP loci reveal strongly supported clustering of the formally recognized species, but did not separate individuals from the eight call types in the red crossbill complex, consistent with recent divergence and ongoing gene flow. Analyses of genetic differentiation based on inferred allele frequency variation however, reveal subtle but significant levels of genetic differentiation among the different call types of the complex and indicate that between call‐type differentiation is greater than that found among different geographic locations within call types. Interpreted in light of evidence of divergent natural selection and strong premating reproductive isolation, the observed genetic differentiation suggests restricted gene flow among sympatric call types consistent with the early stages of ecological speciation.
Evolution | 2004
Adam M. Siepielski; Craig W. Benkman
Abstract Repeated patterns among biological communities suggest similar evolutionary and ecological forces are acting on the communities. Conversely, the lack of such patterns suggests that similar forces are absent or additional ones are present. Coevolution between a seed predator, the red crossbill (Loxia curvirostra complex), and lodgepole pine (Pinus contorta var. latifolia) exemplifies the ecological and evolutionary predictions for coevolving systems. In the absence of another seed predator and preemptive competitor (pine squirrels Tamiasciurus hudsonicus), natural selection by crossbills results in the evolution of larger cones with thicker distal scales, while relaxation of selection by squirrels results in the evolution of cones with more seeds and a greater ratio of seed mass to cone mass. However, in one range, the Little Rocky Mountains, distal scale thickness has diverged as expected but cone size has not. In these mountains seed predation by lodgepole pine cone borer moths (Eucosma recissoriana) was about 10 times greater than in other ranges lacking squirrels. We quantified moth predation and cone traits and found that moths select for smaller cones with fewer seeds. Thus, selection by moths in the Little Rocky Mountains counters both selection by crossbills for large cone size and relaxation of selection by squirrels favoring more seeds per cone and accounts for the relatively small and few‐seeded cones in these mountains. It is also apparent that selection by crossbills changes seed defenses in a manner that favors seed predation by moths, whereas selection by squirrels likely reduces such predation. These results demonstrate the importance of considering the evolutionary consequences of community context in locally evolved (coevolved) traits and interactions.