Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig W. Duffy is active.

Publication


Featured researches published by Craig W. Duffy.


Molecular Biology and Evolution | 2014

Genome-Wide Analysis of Selection on the Malaria Parasite Plasmodium falciparum in West African Populations of Differing Infection Endemicity

Victor A. Mobegi; Craig W. Duffy; Alfred Amambua-Ngwa; Kovana M. Loua; Eugene Laman; Davis Nwakanma; Bronwyn MacInnis; Harvey Aspeling-Jones; Lee Murray; Taane G. Clark; Dominic P. Kwiatkowski; David J. Conway

Locally varying selection on pathogens may be due to differences in drug pressure, host immunity, transmission opportunities between hosts, or the intensity of between-genotype competition within hosts. Highly recombining populations of the human malaria parasite Plasmodium falciparum throughout West Africa are closely related, as gene flow is relatively unrestricted in this endemic region, but markedly varying ecology and transmission intensity should cause distinct local selective pressures. Genome-wide analysis of sequence variation was undertaken on a sample of 100 P. falciparum clinical isolates from a highly endemic region of the Republic of Guinea where transmission occurs for most of each year and compared with data from 52 clinical isolates from a previously sampled population from The Gambia, where there is relatively limited seasonal malaria transmission. Paired-end short-read sequences were mapped against the 3D7 P. falciparum reference genome sequence, and data on 136,144 single nucleotide polymorphisms (SNPs) were obtained. Within-population analyses identifying loci showing evidence of recent positive directional selection and balancing selection confirm that antimalarial drugs and host immunity have been major selective agents. Many of the signatures of recent directional selection reflected by standardized integrated haplotype scores were population specific, including differences at drug resistance loci due to historically different antimalarial use between the countries. In contrast, both populations showed a similar set of loci likely to be under balancing selection as indicated by very high Tajima’s D values, including a significant overrepresentation of genes expressed at the merozoite stage that invades erythrocytes and several previously validated targets of acquired immunity. Between-population FST analysis identified exceptional differentiation of allele frequencies at a small number of loci, most markedly for five SNPs covering a 15-kb region within and flanking the gdv1 gene that regulates the early stages of gametocyte development, which is likely related to the extreme differences in mosquito vector abundance and seasonality that determine the transmission opportunities for the sexual stage of the parasite.


International Journal for Parasitology | 2009

Trypanosoma vivax displays a clonal population structure

Craig W. Duffy; Liam J. Morrison; Alana Black; G. L. Pinchbeck; R. M. Christley; Andreas Schoenefeld; Andy Tait; C. M. R. Turner; Annette MacLeod

African animal trypanosomiasis, or Nagana, is a debilitating and economically costly disease with a major impact on animal health in sub-Saharan Africa. Trypanosoma vivax, one of the principal trypanosome species responsible for the disease, infects a wide host range including cattle, goats, horses and donkeys and is transmitted both cyclically by tsetse flies and mechanically by other biting flies, resulting in a distribution covering large swathes of South America and much of sub-Saharan Africa. While there is evidence for mating in some of the related trypanosome species, Trypanosoma brucei, Trypanosoma congolense and Trypanosoma cruzi, very little work has been carried out to examine this question in T. vivax. Understanding whether mating occurs in T. vivax will provide insight into the dynamics of trait inheritance, for example the spread of drug resistance, as well as examining the origins of meiosis in the order Kinetoplastida. With this in mind we have identified orthologues of eight core meiotic genes within the genome, the presence of which imply that the potential for mating exists in this species. In order to address whether mating occurs, we have investigated a sympatric field population of T. vivax collected from livestock in The Gambia, using microsatellite markers developed for this species. Our analysis has identified a clonal population structure showing significant linkage disequilibrium, homozygote deficits and disagreement with Hardy-Weinberg predictions at six microsatellite loci, indicative of a lack of mating in this population of T. vivax.


PLOS Pathogens | 2015

Admixture in Humans of Two Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species

Paul Cliff Simon Divis; Balbir Singh; Fread Anderios; Shamilah Hisam; Asmad Matusop; Clemens H. M. Kocken; Samuel A. Assefa; Craig W. Duffy; David J. Conway

Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi.

Samuel A. Assefa; Caeul Lim; Mark D. Preston; Craig W. Duffy; Mridul Nair; Sabir A. Adroub; Khamisah Abdul Kadir; Jonathan M. Goldberg; Daniel E. Neafsey; Paul Cliff Simon Divis; Taane G. Clark; Manoj T. Duraisingh; David J. Conway; Arnab Pain; Balbir Singh

Significance Genome sequence analysis reveals that the zoonotic malaria parasite Plasmodium knowlesi consists of three highly divergent subpopulations. Two, commonly seen in sympatric human clinical infections in Malaysian Borneo, were identified in a previous study as corresponding to parasites seen in long-tailed and pig-tailed macaque hosts, respectively. A third type has been detected in a few laboratory-maintained isolates originally derived in the 1960s elsewhere in Southeast Asia. Divergence between the subpopulations varies significantly across the genome but overall is at a level indicating different subspecies. Analysis of the diversity within the most common type in human infections shows strong signatures of natural selection, including balancing selection and directional selection, on loci distinct from those under selection in endemic human malaria parasites. Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10−3) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (FST) = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean FST values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima’s D = −1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima’s D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.


The Journal of Infectious Diseases | 2014

Changes in Malaria Parasite Drug Resistance in an Endemic Population Over a 25-Year Period With Resulting Genomic Evidence of Selection

Davis Nwakanma; Craig W. Duffy; Alfred Amambua-Ngwa; Eniyou Oriero; Kalifa Bojang; Margaret Pinder; Chris Drakeley; Colin J. Sutherland; Paul Milligan; Bronwyn MacInnis; Dominic P. Kwiatkowski; Taane G. Clark; Brian Greenwood; David J. Conway

Background. Analysis of genome-wide polymorphism in many organisms has potential to identify genes under recent selection. However, data on historical allele frequency changes are rarely available for direct confirmation. Methods. We genotyped single nucleotide polymorphisms (SNPs) in 4 Plasmodium falciparum drug resistance genes in 668 archived parasite-positive blood samples of a Gambian population between 1984 and 2008. This covered a period before antimalarial resistance was detected locally, through subsequent failure of multiple drugs until introduction of artemisinin combination therapy. We separately performed genome-wide sequence analysis of 52 clinical isolates from 2008 to prospect for loci under recent directional selection. Results. Resistance alleles increased from very low frequencies, peaking in 2000 for chloroquine resistance-associated crt and mdr1 genes and at the end of the survey period for dhfr and dhps genes respectively associated with pyrimethamine and sulfadoxine resistance. Temporal changes fit a model incorporating likely selection coefficients over the period. Three of the drug resistance loci were in the top 4 regions under strong selection implicated by the genome-wide analysis. Conclusions. Genome-wide polymorphism analysis of an endemic population sample robustly identifies loci with detailed documentation of recent selection, demonstrating power to prospectively detect emerging drug resistance genes.


PLOS Neglected Tropical Diseases | 2013

Population genetics of Trypanosoma brucei rhodesiense: clonality and diversity within and between foci.

Craig W. Duffy; Lorna MacLean; Lindsay Sweeney; Anneli Cooper; C. Michael R. Turner; Andy Tait; Jeremy M. Sternberg; Liam J. Morrison; Annette MacLeod

African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics.


Infection, Genetics and Evolution | 2011

Population genetic structure of Guinea Trypanosoma brucei gambiense isolates according to host factors.

Jacques Kaboré; Annette MacLeod; Vincent Jamonneau; Hamidou Ilboudo; Craig W. Duffy; Mamady Camara; Oumou Camara; Adrien Marie Gaston Belem; Bruno Bucheton; Thierry De Meeûs

Human African trypanosomiasis (HAT) or sleeping sickness is a major public health problem in sub-Saharan Africa and is due to the kinetoplastid parasite Trypanosoma brucei gambiense in West and Central Africa. The exact role of multiple infections, the basis of clinical diversity observed in patients and the determinism that leads trypanosomes into different body fluids of the host remain opened questions to date. In this paper we investigate, in three Guinean foci, whether strains found in blood, lymph or cerebrospinal fluid (CSF) or in patients at different phase of HAT (phase 1, early phase 2 and late phase 2) are representative of the focus they belong to. Amplifications of parasites directly from body fluids led to substantial amounts of allelic drop outs, especially so for blood and CSF samples, which required data recoding of all homozygous sites into missing data. While controlling for geography, date of sampling and patients phase of the disease, we found no effect of body fluids in the genetic structure of T. b. gambiense despite the presence of mixed infections. On the contrary, we found that the strains found in patients in different phase of the disease differed genetically, with early phase patients being more likely to be infected with more recent strains than patients at a more advanced phase of the disease. Thus, the combination of date of sampling and patients status represents a parameter to be controlled for in population genetic structure analyses. Additional studies will also be required to explore further the phenomenon of mixed infections and its consequences.


PLOS ONE | 2013

Human and Animal Trypanosomes in Cote d'Ivoire Form a Single Breeding Population

Paul Capewell; Anneli Cooper; Craig W. Duffy; Andy Tait; C. Michael R. Turner; Wendy Gibson; Dieter Mehlitz; Annette MacLeod

Background Trypanosoma brucei is the causative agent of African Sleeping Sickness in humans and contributes to the related veterinary disease, Nagana. T. brucei is segregated into three subspecies based on host specificity, geography and pathology. T. b. brucei is limited to animals (excluding some primates) throughout sub-Saharan Africa and is non-infective to humans due to trypanolytic factors found in human serum. T. b. gambiense and T. b. rhodesiense are human infective sub-species. T. b. gambiense is the more prevalent human, causing over 97% of human cases. Study of T. b. gambiense is complicated in that there are two distinct groups delineated by genetics and phenotype. The relationships between the two groups and local T. b. brucei are unclear and may have a bearing on the evolution of the human infectivity traits. Methodology/Principal Findings A collection of sympatric T. brucei isolates from Côte d’Ivoire, consisting of T. b. brucei and both groups of T. b. gambiense have previously been categorized by isoenzymes, RFLPs and Blood Incubation Infectivity Tests. These samples were further characterized using the group 1 specific marker, TgSGP, and seven microsatellites. The relationships between the T. b. brucei and T. b. gambiense isolates were determined using principal components analysis, neighbor-joining phylogenetics, STRUCTURE, FST, Hardy-Weinberg equilibrium and linkage disequilibrium. Conclusions/Significance Group 1 T. b. gambiense form a clonal genetic group, distinct from group 2 and T. b. brucei, whereas group 2 T. b. gambiense are genetically indistinguishable from local T. b. brucei. There is strong evidence for mating within and between group 2 T. b. gambiense and T. b. brucei. We found no evidence to support the hypothesis that group 2 T. b. gambiense are hybrids of group 1 and T. b. brucei, suggesting that human infectivity has evolved independently in groups 1 and 2 T. b. gambiense.


Molecular Ecology | 2017

Population genetic structure and adaptation of malaria parasites on the edge of endemic distribution

Craig W. Duffy; Hampate Ba; Samuel A. Assefa; Ambroise D. Ahouidi; Yb Deh; Abderahmane Tandia; Freja C. M. Kirsebom; Dominic P. Kwiatkowski; David J. Conway

To determine whether the major human malaria parasite Plasmodium falciparum exhibits fragmented population structure or local adaptation at the northern limit of its African distribution where the dry Sahel zone meets the Sahara, samples were collected from diverse locations within Mauritania over a range of ~1000 km. Microsatellite genotypes were obtained for 203 clinical infection samples from eight locations, and Illumina paired‐end sequences were obtained to yield high coverage genomewide single nucleotide polymorphism (SNP) data for 65 clinical infection samples from four locations. Most infections contained single parasite genotypes, reflecting low rates of transmission and superinfection locally, in contrast to the situation seen in population samples from countries further south. A minority of infections shared related or identical genotypes locally, indicating some repeated transmission of parasite clones without recombination. This caused some multilocus linkage disequilibrium and local divergence, but aside from the effect of repeated genotypes there was minimal differentiation between locations. Several chromosomal regions had elevated integrated haplotype scores (|iHS|) indicating recent selection, including those containing drug resistance genes. A genomewide FST scan comparison with previous sequence data from an area in West Africa with higher infection endemicity indicates that regional gene flow prevents genetic isolation, but revealed allele frequency differentiation at three drug resistance loci and an erythrocyte invasion ligand gene. Contrast of extended haplotype signatures revealed none to be unique to Mauritania. Discrete foci of infection on the edge of the Sahara are genetically highly connected to the wider continental parasite population, and local elimination would be difficult to achieve without very substantial reduction in malaria throughout the region.


Wellcome Open Research | 2018

Long read assemblies of geographically dispersed Plasmodium falciparum isolates reveal highly structured subtelomeres

Thomas D. Otto; Ulrike Böhme; Mandy Sanders; Adam J. Reid; Ellen I. Bruske; Craig W. Duffy; Peter C. Bull; Richard D. Pearson; Abdirahman I. Abdi; Sandra Dimonte; Lindsay B. Stewart; Susana Campino; Mihir Kekre; William L. Hamilton; Antoine Claessens; Sarah K. Volkman; Daouda Ndiaye; Alfred Amambua-Ngwa; Mahamadou Diakite; Rick M. Fairhurst; David J. Conway; Matthias Franck; Chris Newbold; Matthew Berriman

Background: Although thousands of clinical isolates of Plasmodium falciparum are being sequenced and analysed by short read technology, the data do not resolve the highly variable subtelomeric regions of the genomes that contain polymorphic gene families involved in immune evasion and pathogenesis. There is also no current standard definition of the boundaries of these variable subtelomeric regions. Methods: Using long-read sequence data (Pacific Biosciences SMRT technology), we assembled and annotated the genomes of 15 P. falciparum isolates, ten of which are newly cultured clinical isolates. We performed comparative analysis of the entire genome with particular emphasis on the subtelomeric regions and the internal var genes clusters. Results: The nearly complete sequence of these 15 isolates has enabled us to define a highly conserved core genome, to delineate the boundaries of the subtelomeric regions, and to compare these across isolates. We found highly structured variable regions in the genome. Some exported gene families purportedly involved in release of merozoites show copy number variation. As an example of ongoing genome evolution, we found a novel CLAG gene in six isolates. We also found a novel gene that was relatively enriched in the South East Asian isolates compared to those from Africa. Conclusions: These 15 manually curated new reference genome sequences with their nearly complete subtelomeric regions and fully assembled genes are an important new resource for the malaria research community. We report the overall conserved structure and pattern of important gene families and the more clearly defined subtelomeric regions.

Collaboration


Dive into the Craig W. Duffy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominic P. Kwiatkowski

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Tait

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar

Davis Nwakanma

Medical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge