Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cris L. Luengo Hendriks is active.

Publication


Featured researches published by Cris L. Luengo Hendriks.


Genome Biology | 2006

Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline

Cris L. Luengo Hendriks; Soile V.E. Keranen; Charless C. Fowlkes; Lisa Simirenko; Gunther H. Weber; Angela H. DePace; Clara Henriquez; David W. Kaszuba; Bernd Hamann; Michael B. Eisen; Jitendra Malik; Damir Sudar; Mark D. Biggin; David W. Knowles

BackgroundTo model and thoroughly understand animal transcription networks, it is essential to derive accurate spatial and temporal descriptions of developing gene expression patterns with cellular resolution.ResultsHere we describe a suite of methods that provide the first quantitative three-dimensional description of gene expression and morphology at cellular resolution in whole embryos. A database containing information derived from 1,282 embryos is released that describes the mRNA expression of 22 genes at multiple time points in the Drosophila blastoderm. We demonstrate that our methods are sufficiently accurate to detect previously undescribed features of morphology and gene expression. The cellular blastoderm is shown to have an intricate morphology of nuclear density patterns and apical/basal displacements that correlate with later well-known morphological features. Pair rule gene expression stripes, generally considered to specify patterning only along the anterior/posterior body axis, are shown to have complex changes in stripe location, stripe curvature, and expression level along the dorsal/ventral axis. Pair rule genes are also found to not always maintain the same register to each other.ConclusionThe application of these quantitative methods to other developmental systems will likely reveal many other previously unknown features and provide a more rigorous understanding of developmental regulatory networks.


PLOS Genetics | 2011

A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila

Charless C. Fowlkes; Kelly B. Eckenrode; Meghan D.J. Bragdon; Miriah D. Meyer; Zeba Wunderlich; Lisa Simirenko; Cris L. Luengo Hendriks; Soile V.E. Keranen; Clara Henriquez; David W. Knowles; Mark D. Biggin; Michael B. Eisen; Angela H. DePace

Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell types at this stage of development are conserved, though they can differ in their relative position by up to 3–4 cell widths and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes can lead to distinct output in terms of the placement and number of equivalent cells.


visual information processing conference | 2005

Performance of optimal registration estimators

T.Q. Pham; Marijn Bezuijen; Lucas J. van Vliet; Klamer Schutte; Cris L. Luengo Hendriks

This paper derives a theoretical limit for image registration and presents an iterative estimator that achieves the limit. The variance of any parametric registration is bounded by the Cramer-Rao bound (CRB). This bound is signal-dependent and is proportional to the variance of input noise. Since most available registration techniques are biased, they are not optimal. The bias, however, can be reduced to practically zero by an iterative gradient-based estimator. In the proximity of a solution, this estimator converges to the CRB with a quadratic rate. Images can be brought close to each other, thus speedup the registration process, by a coarse-to-tne multi-scale registration. The performance of iterative registration is finally shown to significantly increase image resolution from multiple low resolution images under translational motions.


IEEE Transactions on Image Processing | 2010

Constrained and Dimensionality-Independent Path Openings

Cris L. Luengo Hendriks

Path openings and closings are morphological operations with flexible line segments as structuring elements. These line segments have the ability to adapt to local image structures, and can be used to detect lines that are not perfectly straight. They also are a convenient and efficient alternative to straight line segments as structuring elements when the exact orientation of lines in the image is not known. These path operations are defined by an adjacency relation, which typically allows for lines that are approximately horizontal, vertical or diagonal. However, because this definition allows zig-zag lines, diagonal paths can be much shorter than the corresponding horizontal or vertical paths. This undoubtedly causes problems when attempting to use path operations for length measurements. This paper 1) introduces a dimensionality-independent implementation of the path opening and closing algorithm by Appleton and Talbot, 2) proposes a constraint on the path operations to improve their ability to perform length measurements, and 3) shows how to use path openings and closings in a granulometry to obtain the length distribution of elongated structures directly from a gray-value image, without a need for binarizing the image and identifying individual objects.


Pattern Recognition | 2005

The generalized Radon transform: Sampling, accuracy and memory considerations

Cris L. Luengo Hendriks; Michael van Ginkel; P.W. Verbeek; Lucas J. van Vliet

The generalized Radon (or Hough) transform is a well-known tool for detecting parameterized shapes in an image. The Radon transform is a mapping between the image space and a parameter space. The coordinates of a point in the latter correspond to the parameters of a shape in the image. The amplitude at that point corresponds to the amount of evidence for that shape. In this paper we discuss three important aspects of the Radon transform. The first aspect is discretization. Using concepts from sampling theory we derive a set of sampling criteria for the generalized Radon transform. The second aspect is accuracy. For the specific case of the Radon transform for spheres, we examine how well the location of the maxima matches the true parameters. We derive a correction term to reduce the bias in the estimated radii. The third aspect concerns a projection-based algorithm to reduce memory requirements.


Evolution | 2011

Artificial selection on egg size perturbs early pattern formation in Drosophila melanogaster

Cecelia M. Miles; Susan E. Lott; Cris L. Luengo Hendriks; Michael Ludwig; Manu; Calvin L. Williams; Martin Kreitman

Pattern formation in Drosophila embryogenesis has been widely investigated as a developmental and evolutionary model of robustness. To ask whether genetic variation for pattern formation is suppressed in this system, artificial selection for divergent egg size was used to challenge the scaling of even‐skipped (eve) pattern formation in mitotic cycle 14 (stage 5) embryos of Drosophila melanogaster. Three‐dimensional confocal imaging revealed shifts in the allometry of eve pair‐rule stripes along both anterior–posterior (A–P) and dorsoventral (D–V) axes as a correlated response to egg size selection, indicating the availability of genetic variation for this buffered trait. Environmental perturbation was not required for the manifestation of this variation. The number of nuclei at the cellular blastoderm stage also changed in response to selection, with large‐egg selected lines having more than 1000 additional nuclei relative to small‐egg lines. This increase in nuclear number in larger eggs does not scale with egg size, however, as nuclear density is inversely correlated with egg length. Nuclear density varies along the A–P axis but does not correlate with the shift in eve stripe allometry between the selection treatments. Despite its macroevolutionary conservation, both eve stripe patterning and blastoderm cell number vary genetically both within and between closely related species.


Pattern Recognition Letters | 2013

Improving the stochastic watershed

Karl Bengtsson Bernander; Kenneth Gustavsson; Bettina Selig; Ida-Maria Sintorn; Cris L. Luengo Hendriks

The stochastic watershed is an unsupervised segmentation tool recently proposed by Angulo and Jeulin. By repeated application of the seeded watershed with randomly placed markers, a probability density function for object boundaries is created. In a second step, the algorithm then generates a meaningful segmentation of the image using this probability density function. The method performs best when the image contains regions of similar size, since it tends to break up larger regions and merge smaller ones. We propose two simple modifications that greatly improve the properties of the stochastic watershed: (1) add noise to the input image at every iteration, and (2) distribute the markers using a randomly placed grid. The noise strength is a new parameter to be set, but the output of the algorithm is not very sensitive to this value. In return, the output becomes less sensitive to the two parameters of the standard algorithm. The improved algorithm does not break up larger regions, effectively making the algorithm useful for a larger class of segmentation problems.


Lecture Notes in Computer Science | 2001

A Rotation-Invariant Morphology for Shape Analysis of Anisotropic Objects and Structures

Cris L. Luengo Hendriks; Lucas J. van Vliet

In this paper we propose a series of novel morphological operators that are anisotropic, and adapt themselves to the local orientation in the image. This new morphology is therefore rotation invariant; i.e. rotation of the image before or after the operation yields the same result. We present relevant properties required by morphology, as well as other properties shared with common morphological operators. Two of these new operators are increasing, idempotent and absorbing, which are required properties for a morphological operator to be used as a sieve. A sieve is a sequence of filters of increasing size parameter, that can be used to construct size distributions. As an example of the usefulness of these new operators, we show how a sieve can be build to estimate a particle or pore length distribution, as well as the elongation of those features.


BMC Medical Imaging | 2015

Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy

Bettina Selig; Koenraad A Vermeer; Bernd Rieger; Toine Hillenaar; Cris L. Luengo Hendriks

BackgroundManual and semi-automatic analyses of images, acquired in vivo by confocal microscopy, are often used to determine the quality of corneal endothelium in the human eye. These procedures are highly time consuming. Here, we present two fully automatic methods to analyze and quantify corneal endothelium imaged by in vivo white light slit-scanning confocal microscopy.MethodsIn the first approach, endothelial cell density is estimated with the help of spatial frequency analysis. We evaluate published methods, and propose a new, parameter-free method. In the second approach, based on the stochastic watershed, cells are automatically segmented and the result is used to estimate cell density, polymegathism (cell size variability) and pleomorphism (cell shape variation). We show how to determine optimal values for the three parameters of this algorithm, and compare its results to a semi-automatic delineation by a trained observer.ResultsThe frequency analysis method proposed here is more precise than any published method. The segmentation method outperforms the fully automatic method in the NAVIS software (Nidek Technologies Srl, Padova, Italy), which significantly overestimates the number of cells for cell densities below approximately 1200 mm−2, as well as previously published methods.ConclusionsThe methods presented here provide a significant improvement over the state of the art, and make in vivo, automated assessment of corneal endothelium more accessible. The segmentation method proposed paves the way to many possible new morphometric parameters, which can quickly and precisely be determined from the segmented image.


Pattern Recognition Letters | 2014

Adaptive mathematical morphology - A survey of the field

Vladimir Urić; Anders Landström; Matthew J. Thurley; Cris L. Luengo Hendriks

We present an up-to-date survey on the topic of adaptive mathematical morphology. A broad review of research performed within the field is provided, as well as an in-depth summary of the theoretical advances within the field. Adaptivity can come in many different ways, based on different attributes, measures, and parameters. Similarities and differences between a few selected methods for adaptive structuring elements are considered, providing perspective on the consequences of different types of adaptivity. We also provide a brief analysis of perspectives and trends within the field, discussing possible directions for future studies.

Collaboration


Dive into the Cris L. Luengo Hendriks's collaboration.

Top Co-Authors

Avatar

Erik L. G. Wernersson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

David W. Knowles

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark D. Biggin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lucas J. van Vliet

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bettina Selig

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Lena Holm

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Ellinor Spörndly-Nees

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Soile V.E. Keranen

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge