Cristian A. Droppelmann
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristian A. Droppelmann.
Molecular Brain | 2013
Danae Campos-Melo; Cristian A. Droppelmann; Zhongping He; Kathryn Volkening; Michael J. Strong
BackgroundAmyotrophic Lateral Sclerosis (ALS) is a progressive, adult onset, fatal neurodegenerative disease of motor neurons. There is emerging evidence that alterations in RNA metabolism may be critical in the pathogenesis of ALS. MicroRNAs (miRNAs) are small non-coding RNAs that are key determinants of mRNA stability. Considering that miRNAs are increasingly being recognized as having a role in a variety of neurodegenerative diseases, we decided to characterize the miRNA expression profile in spinal cord (SC) tissue in sporadic ALS (sALS) and controls. Furthermore, we performed functional analysis to identify a group of dysregulated miRNAs that could be responsible for the selective suppression of low molecular weight neurofilament (NFL) mRNA observed in ALS.ResultsUsing TaqMan arrays we analyzed 664 miRNAs and found that a large number of miRNAs are differentially expressed in ventral lumbar SC in sALS compared to controls. We observed that the majority of dysregulated miRNAs are down-regulated in sALS SC tissues. Ingenuity Pathway Analysis (IPA) showed that dysregulated miRNAs are linked with nervous system function and cell death. We used two prediction algorithms to develop a panel of miRNAs that have recognition elements within the human NFL mRNA 3′UTR, and then we performed functional analysis for these miRNAs. Our results demonstrate that three miRNAs that are dysregulated in sALS (miR-146a*, miR-524-5p and miR-582-3p) are capable of interacting with NFL mRNA 3′UTR in a manner that is consistent with the suppressed steady state mRNA levels observed in spinal motor neurons in ALS.ConclusionsThe miRNA expression profile is broadly altered in the SC in sALS. Amongst these is a group of dysregulated miRNAs directly regulate the NFL mRNA 3′UTR, suggesting a role in the selective suppression of NFL mRNA in the ALS spinal motor neuron neurofilamentous aggregate formation.
Amyotrophic Lateral Sclerosis | 2014
Cristian A. Droppelmann; Danae Campos-Melo; Muhammad Ishtiaq; Kathryn Volkening; Michael J. Strong
Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by the death of motor neurons. While the exact molecular and cellular basis for motor neuron death is not yet fully understood, the current conceptualization is that multiple aberrant biological processes contribute. Among these, one of the most compelling is based on alterations of RNA metabolism. In this review, we examine how the normal process of cellular response to stress leading to RNA stress granule formation might become pathological, resulting in the formation of stable protein aggregates. We discuss the emerging roles of post-translational modifications of RNA binding proteins in the genesis of these aggregates. We also review the contemporary literature regarding the potential role for more widespread alterations in RNA metabolism in ALS, including alterations in miRNA biogenesis, spliceosome integrity and RNA editing. A hypothesis is presented in which aberrant RNA processing, modulated through pathological stress granule formation as a reflection of either mutations within intrinsically disordered or prion-like domains of critical RNA binding proteins, or the post-translational modification of RNA binding proteins, contributes directly to motor neuron death.
Journal of Biological Chemistry | 2009
Cristian A. Droppelmann; Jaime Gutiérrez; Cecilia Vial; Enrique Brandan
Matrix metalloproteinase-2 (MMP-2) is an important extracellular matrix remodeling enzyme, and it has been involved in different fibrotic disorders. The connective tissue growth factor (CTGF/CCN2), which is increased in these pathologies, induces the production of extracellular matrix proteins. To understand the fibrotic process observed in diverse pathologies, we analyzed the fibroblast response to CTGF when MMP-2 activity is inhibited. CTGF increased fibronectin (FN) amount, MMP-2 mRNA expression, and gelatinase activity in 3T3 cells. When MMP-2 activity was inhibited either by the metalloproteinase inhibitor GM-6001 or in MMP-2-deficient fibroblasts, an increase in the basal amount of FN together with a decrease of its levels in response to CTGF was observed. This paradoxical effect could be explained by the fact that the excess of FN could block the access to other ligands, such as CTGF, to integrins. This effect was emulated in fibroblasts by adding exogenous FN or RGDS peptides or using anti-integrin αV subunit-blocking antibodies. Additionally, in MMP-2-deficient cells CTGF did not induce the formation of stress fibers, focal adhesion sites, and ERK phosphorylation. Anti-integrin αV subunit-blocking antibodies inhibited ERK phosphorylation in control cells. Finally, in MMP-2-deficient cells, FN mRNA expression was not affected by CTGF, but degradation of 125I-FN was increased. These results suggest that expression, regulation, and activity of MMP-2 can play an important role in the initial steps of fibrosis and shows that FN levels can regulate the cellular response to CTGF.
Amyotrophic Lateral Sclerosis | 2013
Cristian A. Droppelmann; Jian Wang; Danae Campos-Melo; Brian A. Keller; Kathryn Volkening; Robert A. Hegele; Michael J. Strong
Abstract Rho guanine nucleotide exchange factor (RGNEF) is a novel NFL mRNA destabilizing factor that forms neuronal cytoplasmic inclusions in spinal motor neurons in both sporadic (SALS) and familial (FALS) ALS patients. Given the observation of genetic mutations in a number of mRNA binding proteins associated with ALS, including TDP-43, FUS/TLS and mtSOD1, we analysed the ARHGEF28 gene (approx. 316 kb) that encodes for RGNEF in FALS cases to determine if mutations were present. We performed genomic sequencing, copy number variation analysis using TaqMan real-time PCR and spinal motor neuron immunohistochemistry using a novel RGNEF antibody. In this limited sample of FALS cases (n=7) we identified a heterozygous mutation that is predicted to generate a premature truncated gene product. We also observed extensive regions of homozygosity in the ARHGEF28 gene in two FALS patients. In conclusion, our findings of genetic alterations in the ARHGEF28 gene in cases of FALS suggest that a more comprehensive genetic analysis would be warranted.
Biogerontology | 2014
Danae Campos-Melo; Cristian A. Droppelmann; Kathryn Volkening; Michael J. Strong
Abstract For many years, epidemiological studies have suggested an association between cancer and neurodegenerative disorders—two disease processes that seemingly have little in common. Although these two disease processes share disruptions in a wide range of cellular pathways, including cell survival, cell death and the cell cycle, the end result is very divergent: uncontrolled cell survival and proliferation in cancer and progressive neuronal cell death in neurodegeneration. Despite the clinical data connecting these two disease processes, little is known about the molecular links between them. Among the mechanisms affected in cancer and neurodegenerative diseases, alterations in RNA metabolism are obtaining significant attention given the critical role for RNA transcription, maturation, transport, stability, degradation and translation in normal cellular function. RNA-binding proteins (RBPs) are integral to each stage of RNA metabolism through their participation in the formation of ribonucleoprotein complexes (RNPs). RBPs have a broad range of functions including posttranscriptional regulation of mRNA stability, splicing, editing and translation, mRNA export and localization, mRNA polyadenylation and miRNA biogenesis, ultimately impacting the expression of every single gene in the cell. In this review, we examine the evidence for RBPs as being key a molecular linkages between cancer and neurodegeneration.
Frontiers in Cellular Neuroscience | 2014
Cristian A. Droppelmann; Danae Campos-Melo; Kathryn Volkening; Michael J. Strong
Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3′ untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.
Current Vascular Pharmacology | 2015
Jaime Gutiérrez; Cristian A. Droppelmann; Rocío Salsoso; Francisco Westermeier; Fernando Toledo; Carlos Salomon; Carlos Sanhueza; Fabián Pardo; Andrea Leiva; Luis Sobrevia
Angiogenesis is a key process by which new capillary blood vessels are formed, sustaining the supply of oxygen and other nutrients to the body allowing its growth and wound healing, among others. However, angiogenesis also associates with pathological processes, such us tumor growth. Vascular endothelial cells produce different matrix remodeling enzymes such as matrix metalloproteinases and a-disintegrin and metalloproteinases, which have both positive and negative effects on angiogenesis, regulating the cell environment and signaling. However, little is known about the regulation of the activity of these proteases during vascular development. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a membrane-anchored inhibitor of different matrix metalloproteinases and a-disintegrin and metalloproteinases, being a critical regulator of extracellular matrix remodeling and signaling pathway, particularly Notch, which is critical for the maturation of the growing vessels. Reck knockout mice die in utero showing vascular developmental defects and massive hemorrhages. These defects were not observed in knockout mice for secreted-soluble matrix metalloproteinase inhibitors pointing to an exclusive role of RECK in vascular development and maturation since its location at the plasma membrane. Despite the above, the exact role of RECK in this process has not been clarified. This review is focused to summarize the available information on the role of RECK as membrane anchored matrix metalloproteinases and a-disintegrin and metalloproteinases inhibitor, proposing a hypothesis by which RECK play key roles in the physiology and pathophysiology of the angiogenesis processes.
Frontiers in Molecular Neuroscience | 2017
Zachary C. E. Hawley; Danae Campos-Melo; Cristian A. Droppelmann; Michael J. Strong
MiRNAs are key regulators of the mammalian transcriptome that have been increasingly linked to degenerative diseases of the motor neurons. Although many of the miRNAs currently incriminated as participants in the pathogenesis of these diseases are also important to the normal development and function of motor neurons, at present there is no knowledge of the complete miRNA profile of motor neurons. In this review, we examine the current understanding with respect to miRNAs that are specifically required for motor neuron development, function and viability, and provide evidence that these should be considered as a functional network of miRNAs which we have collectively termed MotomiRs. We will also summarize those MotomiRs currently known to be associated with both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), and discuss their potential use as biomarkers.
PLOS ONE | 2015
Jaime Gutiérrez; Cristian A. Droppelmann; Osvaldo Contreras; Chiaki Takahashi; Enrique Brandan
Fibroblasts are critical for wound contraction; a pivotal step in wound healing. They produce and modify the extracellular matrix (ECM) required for the proper tissue remodeling. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a key regulator of ECM homeostasis and turnover. However, its role in wound contraction is presently unknown. Here we describe that Transforming growth factor type β1 (TGF-β1), one of the main pro-fibrotic wound-healing promoting factors, decreases RECK expression in fibroblasts through the Smad and JNK dependent pathways. This TGF-β1 dependent downregulation of RECK occurs with the concomitant increase of β1-integrin, which is required for fibroblasts adhesion and wound contraction through the activation of focal adhesion kinase (FAK). Loss and gain RECK expression experiments performed in different types of fibroblasts indicate that RECK downregulation mediates TGF-β1 dependent β1-integrin expression. Also, reduced levels of RECK potentiate TGF-β1 effects over fibroblasts FAK-dependent contraction, without affecting its cognate signaling. The above results were confirmed on fibroblasts derived from the Reck +/- mice compared to wild type-derived fibroblasts. We observed that Reck +/- mice heal dermal wounds more efficiently than wild type mice. Our results reveal a critical role for RECK in skin wound contraction as a key mediator in the axis: TGF-β1—RECK- β1-integrin.
European Journal of Neurology | 2014
G. M. Gargiulo-Monachelli; Danae Campos-Melo; Cristian A. Droppelmann; Brian A. Keller; Cheryl Leystra-Lantz; A.F. De Nicola; M.C. Gonzalez Deniselle; Kathryn Volkening; Michael J. Strong
Previous studies have suggested that elevated progesterone levels are associated with a slower disease course in amyotrophic lateral sclerosis (ALS). Given that the effects of progesterone are mediated in part by the classical progesterone receptor (PR), the expression and cellular localization of the A and B isoforms (PR‐A and PR‐B, respectively) of the PR in control (neuropathologically normal) and ALS‐affected spinal cord (SC) were examined.