Cristian Follmer
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristian Follmer.
Journal of Molecular Biology | 2011
Carolina A. Braga; Cristian Follmer; Fernando L. Palhano; Elias Khattar; Mônica S. Freitas; Luciana Romão; Saviana Di Giovanni; Hilal A. Lashuel; Jerson L. Silva; Debora Foguel
Parkinsons disease (PD) is a movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of intraneuronal inclusions called Lewy bodies, which are composed mainly of α-synuclein (α-syn). Selegiline (Sel) is a noncompetitive monoamino oxidase B inhibitor that has neuroprotective effects and has been administered to PD patients as monotherapy or in combination with l-dopa. Besides its known effect of increasing the level of dopamine (DA) by monoamino oxidase B inhibition, Sel induces other effects that contribute to its action against PD. We evaluated the effects of Sel on the in vitro aggregation of A30P and wild-type α-syn. Sel delays fibril formation by extending the lag phase of aggregation. In the presence of Sel, electron microscopy reveals amorphous heterogeneous aggregates, including large annular species, which are innocuous to a primary culture enriched in dopaminergic neurons, while their age-matched counterparts are toxic. The inhibitory effect displayed by Sel is abolished when seeds (small fibril pieces) are added to the aggregation reaction, reinforcing the hypothesis that Sel interferes with early nuclei formation and, to a lesser extent, with fibril elongation. NMR experiments indicate that Sel does not interact with monomeric α-syn. Interestingly, when added in combination with DA (which favors the formation of toxic protofibrils), Sel overrides the inhibitory effect of DA and favors fibrillation. Additionally, Sel blocks the formation of smaller toxic aggregates by perturbing DA-dependent fibril disaggregation. These effects might be beneficial for PD patients, since the sequestration of protofibrils into fibrils or the inhibition of fibril dissociation could alleviate the toxic effects of protofibrils on dopaminergic neurons. In nondopaminergic neurons, Sel might slow the fibrillation, giving rise to the formation of large nontoxic aggregates.
Biochimica et Biophysica Acta | 2009
Pedro R. Barros; Hubert Stassen; Mônica S. Freitas; Célia R. Carlini; Marco Antonio Chaer Nascimento; Cristian Follmer
Jaburetox-2Ec, a recombinant peptide derived from an urease isoform (JBURE-II), displays high insecticidal activity against important pests such as Spodoptera frugiperda and Dysdercus peruvianus. Although the molecular mechanism of action of ureases-derived peptides remains unclear, previous ab initio data suggest the presence of structural motifs in Jaburetox-2Ec with characteristics similar to those found in a class of pore-forming peptides. Here, we investigated the molecular aspects of the interaction between Jaburetox-2Ec and large unilamellar vesicles. Jaburetox-2Ec displays membrane-disruptive ability on acidic lipid bilayers and this effect is greatly influenced by peptide aggregation. Corroborating with this finding, molecular modeling studies revealed that Jaburetox-2Ec might adopt a well-defined beta-hairpin conformation similar to those found in antimicrobial peptides with membrane disruption properties. In addition, molecular dynamics simulations suggest that the protein is able to anchor at a polar/non-polar interface. In the light of these findings, for the first time it was possible to point out some evidence that the peptide Jaburetox-2Ec interacting with lipid vesicles promotes membrane permeabilization.
Biochimica et Biophysica Acta | 2014
Anne Helene Souza Martinelli; Karine Kappaun; Rodrigo Ligabue-Braun; Marina S. Defferrari; Angela Regina Piovesan; Fernanda Stanisçuaski; Diogo Ribeiro Demartini; Cháriston André Dal Belo; Carlos Gabriel Moreira de Almeida; Cristian Follmer; Hugo Verli; Célia R. Carlini; Giancarlo Pasquali
BACKGROUND Ureases are metalloenzymes involved in defense mechanisms in plants. The insecticidal activity of Canavalia ensiformis (jack bean) ureases relies partially on an internal 10kDa peptide generated by enzymatic hydrolysis of the protein within susceptible insects. A recombinant version of this peptide, jaburetox, exhibits insecticidal, antifungal and membrane-disruptive properties. Molecular modeling of jaburetox revealed a prominent β-hairpin motif consistent with either neurotoxicity or pore formation. METHODS Aiming to identify structural motifs involved in its effects, mutated versions of jaburetox were built: 1) a peptide lacking the β-hairpin motif (residues 61-74), JbtxΔ-β; 2) a peptide corresponding the N-terminal half (residues 1-44), Jbtx N-ter, and 3) a peptide corresponding the C-terminal half (residues 45-93), Jbtx C-ter. RESULTS 1) JbtxΔ-β disrupts liposomes, and exhibited entomotoxic effects similar to the whole peptide, suggesting that the β-hairpin motif is not a determinant of these biological activities; 2) both Jbtx C-ter and Jbtx N-ter disrupted liposomes, the C-terminal peptide being the most active; and 3) while Jbtx N-ter persisted to be biologically active, Jbtx C-ter was less active when tested on different insect preparations. Molecular modeling and dynamics were applied to the urease-derived peptides to complement the structure-function analysis. MAJOR CONCLUSIONS The N-terminal portion of the Jbtx carries the most important entomotoxic domain which is fully active in the absence of the β-hairpin motif. Although the β-hairpin contributes to some extent, probably by interaction with insect membranes, it is not essential for the entomotoxic properties of Jbtx. GENERAL SIGNIFICANCE Jbtx represents a new type of insecticidal and membrane-active peptide.
FEBS Journal | 2013
Eduardo Coelho-Cerqueira; Phelippe Carmo-Gonçalves; Anderson S. Pinheiro; Juliana R. Cortines; Cristian Follmer
Fibrillization of the protein α‐synuclein (α‐syn) is a hallmark of Parkinsons disease and other α‐synucleinopathies. The well‐established idea that α‐syn is a natively disordered monomer prone to forming fibrils was recently challenged by data showing that the protein mostly exists in vitro and in vivo as helically folded tetramers that are resistant to fibrillization. These apparently conflicting findings may be reconciled by the idea that α‐syn exists as a disordered monomer in equilibrium with variable amounts of dynamic oligomeric species. In this context, varying the approaches used for protein purification, such as the method used to lyse cells or the inclusion of denaturing agents, could dramatically perturb this equilibrium and hence alter the relative abundance of the disordered monomer. In the present study, we investigated how the current methods for α‐syn purification affect the structure and oligomeric state of the protein, and we discuss the main pitfalls associated with the production of recombinant α‐syn in Escherichia coli. We demonstrate that α‐syn was expressed in E. coli as a disordered monomer independent of both the cell lysis method and the use of heating/acidification for protein purification. In addition, we provide convincing evidence that the disordered monomer exists in equilibrium with a dynamic dimer, which is not an artefact of the cross‐linking protocol as previously suggested. Unlike the helically folded tetramer, α‐syn dimer is prone to fibrillate and thus it may be an interesting target for anti‐fibrillogenic molecules.
PLOS Neglected Tropical Diseases | 2012
Karina Mariante Monteiro; Mateus B. Cardoso; Cristian Follmer; Nádya Pesce da Silveira; Daiani Machado de Vargas; Elliot W. Kitajima; Arnaldo Zaha; Henrique Bunselmeyer Ferreira
Background Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. Methodology/Principal Findings The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. Conclusions/Significance For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.
Bioorganic & Medicinal Chemistry Letters | 2014
Eduardo Coelho-Cerqueira; Anderson S. Pinheiro; Cristian Follmer
Thioflavin-T (ThT) is a cationic benzothiazole dye that displays enhanced fluorescence upon binding to amyloid fibrils. This property makes ThT the current reagent of choice for the quantification of amyloid fibrils. Herein, we investigate the main pitfalls associated with the use of ThT-based assays to monitor the fibrillation of α-synuclein (α-syn), a protein linked to Parkinsons disease and other α-synucleinopathies. We demonstrated for the first time that ThT interacts with α-syn disordered monomer and accelerates the protein fibrillation in vitro. As a consequence, misleading conclusions may arise from the use of ThT-based real-time assays in the evaluation of anti-fibrillogenic compounds. Interestingly, NMR experiments indicated that C-terminal domain of α-syn is the main region perturbed by ThT interaction, similarly to that found for the pesticide paraquat, a well-documented accelerator of α-syn fibrillation. Moreover, we demonstrated that certain potent inhibitors of α-syn fibrillation, such as oxidized catecholamines and polyphenols, undergo spontaneous oxidation in aqueous solution, generating compounds that strongly quench ThT fluorescence. In light of these findings, we alert for possible artifacts associated to the measure of the anti-fibrillogenic activity based only on ThT fluorescence approach.
Bioorganic & Medicinal Chemistry | 2011
Eduardo Coelho Cerqueira; Paulo A. Netz; Cristiane S. Diniz; Vanessa Petry do Canto; Cristian Follmer
Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurodegenerative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonselective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that MAO-B was inhibited competitively by 1,4-NQ (K(i)=1.4 μM) whereas MAO-A was inhibited by non-competitive mechanism (K(i)=7.7 μM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold selectivity for MAO-B (K(i)=0.4 μM) in comparison with MAO-A (K(i)=26 μM), which makes it as selective as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for menadione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by 1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor of human MAO.
PLOS ONE | 2011
Mônica S. Freitas; Cristian Follmer; Lilian T. Costa; Cecília Vilani; M. Lucia Bianconi; C.A. Achete; Jerson L. Silva
The Ebola fusion peptide (EBO16) is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO16 and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM), a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO16 to induce lipid mixing. On the other hand, EBO16 was structurally sensitive to interaction with lipid rafts (DRMs), but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO16. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO16 and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.
Chemical Biology & Drug Design | 2014
Eduardo Coelho-Cerqueira; Paulo A. Netz; Vanessa Petry do Canto; Angelo C. Pinto; Cristian Follmer
Monoamine oxidase (MAO) action has been involved in the regulation of neurotransmitters levels, cell signaling, cellular growth, and differentiation as well as in the balance of the intracellular polyamine levels. Although so far obscure, MAO inhibitors are believed to have some effect on tumors progression. 1,4‐naphthoquinone (1,4‐NQ) has been pointed out as a potential pharmacophore for inhibition of both MAO and DNA topoisomerase activities, this latter associated with antitumor activity. Herein, we demonstrated that certain antitumor 1,4‐NQs, including spermidine‐1,4‐NQ, lapachol, and nor‐lapachol display inhibitory activity on human MAO‐A and MAO‐B. Kinetic studies indicated that these compounds are reversible and competitive MAO inhibitors, being the enzyme selectivity greatly affected by substitutions on 1,4‐NQ ring. Molecular docking studies suggested that the most potent MAO inhibitors are capable to bind to the MAO active site in close proximity of flavin moiety. Furthermore, ability to inhibit both MAO‐A and MAO‐B can be potentialized by the formation of hydrogen bonds between these compounds and FAD and/or the residues in the active site. Although spermidine‐1,4‐NQs exhibit antitumor action primarily by inhibiting topoisomerase via DNA intercalation, our findings suggest that their effect on MAO activity should be taken into account when their application in cancer therapy is considered.
Neurochemistry International | 2013
Fernanda Luna da Silva; Eduardo Coelho Cerqueira; Mônica S. Freitas; Daniela Leão Gonçalves; Lilian T. Costa; Cristian Follmer
In the last decades, a series of compounds, including quinones and polyphenols, has been described as having anti-fibrillogenic action on α-synuclein (α-syn) whose aggregation is associated to the pathogenesis of Parkinsons disease (PD). Most of these molecules act as promiscuous anti-amyloidogenic agents, interacting with the diverse amyloidogenic proteins (mostly unfolded) through non-specific hydrophobic interactions. Herein we investigated the effect of the vitamins K (phylloquinone, menaquinone and menadione), which are 1,4-naphthoquinone (1,4-NQ) derivatives, on α-syn aggregation, comparing them with other anti-fibrillogenic molecules such as quinones, polyphenols and lipophilic vitamins. Vitamins K delayed α-syn fibrillization in substoichiometric concentrations, leading to the formation of short, sheared fibrils and amorphous aggregates, which are less prone to produce leakage of synthetic vesicles. In seeding conditions, menadione and 1,4-NQ significantly inhibited fibrils elongation, which could be explained by their ability to destabilize preformed fibrils of α-syn. Bidimensional NMR experiments indicate that a specific site at the N-terminal α-syn (Gly31/Lys32) is involved in the interaction with vitamins K, which is corroborated by previous studies suggesting that Lys is a key residue in the interaction with quinones. Together, our data suggest that 1,4-NQ, recently showed up by our group as a potential scaffold for designing new monoamine oxidase inhibitors, is also capable to modulate α-syn fibrillization in vitro.