Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristian Neipp is active.

Publication


Featured researches published by Cristian Neipp.


European Journal of Physics | 2002

Large and small deflections of a cantilever beam

Tarsicio Beléndez; Cristian Neipp; Augusto Beléndez

The classical problem of the deflection of a cantilever beam of linear elastic material, under the action of an external vertical concentrated load at the free end, is analysed. We present the differential equation governing the behaviour of this physical system and show that this equation, although straightforward in appearance, is in fact rather difficult to solve due to the presence of a non-linear term. In this sense, this system is similar to another well known physical system: the simple pendulum. An approximation of the behaviour of a cantilever beam for small deflections was obtained from the equation for large deflections, and we present various numerical results for both cases. Finally, we compare the theoretical results with the experimental results obtained in the laboratory.


Optics Express | 2005

Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model

John V. Kelly; Michael R. Gleeson; Ciara E. Close; Feidhlim T. O'Neill; John T. Sheridan; Sergi Gallego; Cristian Neipp

The nonlocal polymerization-driven diffusion model (NPDD) has been shown to predict high spatial frequency cut-off in photopolymers and to accurately predict higher order grating components. We propose an extension to the NPDD model to account for the temporal response associated with polymer chain growth. An exponential response function is proposed to describe transient effects during the polymerization process. The extended model is then solved using a finite element technique and the nature of grating evolution examined in the case when illumination is stopped prior to the saturation of the grating recording process. Based on independently determined refractive index measurements we determine the temporal evolution of the refractive index modulation and the resulting diffraction efficiency using rigorous coupled wave theory. Material parameters are then extracted based on fits to experimental data for nonlinear and both ideal and non-ideal kinetic models.


European Journal of Physics | 2007

APPLICATION OF THE HOMOTOPY PERTURBATION METHOD TO THE NONLINEAR PENDULUM

Augusto Beléndez; A. Hernández; Tarsicio Beléndez; Cristian Neipp; A. Márquez

The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a simple pendulum, and an approximate expression for its period is obtained. Only one iteration leads to high accuracy of the solutions and the relative error for the approximate period is less than 2% for amplitudes as high as 130°. Another important point is that this method provides an analytical expression for the angular displacement as a function of time as the sum of an infinite number of harmonics; although for practical purposes it is sufficient to consider only a finite number of harmonics. We believe that the present study may be a suitable and fruitful exercise for teaching and better understanding perturbation techniques in advanced undergraduate courses on classical mechanics.


Optics Express | 2005

Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers

Sergi Gallego; Manuel Ortuño; Cristian Neipp; Andrés Márquez; Augusto Beléndez; Inmaculada Pascual; John V. Kelly; John T. Sheridan

In recent years the interest in thick holographic recording materials for storage applications has increased. In particular, photopolymers are interesting materials for obtaining inexpensive thick dry layers with low noise and high diffraction efficiencies. Nonetheless, as will be demonstrated in this work, the attenuation in depth of light during the recording limits dramatically the effective optical thickness of the material. This effect must be taken into account whenever thick diffraction gratings are recorded in photopolymer materials. In this work the differences between optical and physical thickness are analyzed, applying a method based on the Rigorous Coupled Wave Theory and taking into account the attenuation in depth of the refractive index profile. By doing this the maximum optical thickness that can be achieved can be calculated. When the effective thickness is known, then the real storage capacity of the material can be obtained.


Journal of The Optical Society of America B-optical Physics | 2005

Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions

John V. Kelly; Feidhlim T. O'Neill; John T. Sheridan; Cristian Neipp; Sergi Gallego; Manuel Ortuño

The kinetics of photosensitive polymer holographic recording materials are examined assuming a material that exhibits nonideal kinetic behavior. Previously, a linear relationship between monomer concentration and polymerization was assumed when deriving the nonlocal polymer-driven diffusion (NPDD) model. This is consistent with ideal kinetic conditions in which chain termination is governed by a bimolecular process. However, these models have been reported to disagree with experimental results. In a limiting case of nonideal kinetics it is assumed that primary termination is dominant. In this case the NPDD model must be modified to incorporate a quadratic relationship between the monomer concentration and the polymerization rate. By use of a multiharmonic expansion method of solution the predictions of ideal (bimolecular or linear) and nonideal (primary or quadratic) kinetic models are compared. By using these models we carried out numerical fits to experimental growth curves of gratings recorded in an acrylamide-based cross-linked photopolymer system. Superior fits are achieved by use of the primary termination model. Physical parameters such as the diffusion constant are extracted and compared with results previously reported in the literature.


Applied Optics | 2003

Holographic characteristics of a 1-mm-thick photopolymer to be used in holographic memories

Manuel Ortuño; Sergi Gallego; Celia García; Cristian Neipp; Inmaculada Pascual

Poly(vinyl alcohol-acrylamide) photopolymers are materials of interest in the field of digital information storage (holographic memories). We analyzed the behavior of a 1-mm-thick photopolymer. Using a standard holographic setup, we recorded unslanted diffraction gratings. The material has high angular selectivity (0.4 degrees), good sensitivity (88 mJ/cm2), and small losses caused by absorption and scattering of light. It also has a high maximum diffraction efficiency (70%). A significant induction period was seen in the material. The authors hypothesize that, during most of this induction period, polymerization does in fact take place but is not reflected in the appearance of the diffracted light until a certain threshold value of exposure is reached.


Optics Express | 2005

3 Dimensional analysis of holographic photopolymers based memories

Sergi Gallego; Manuel Ortuño; Cristian Neipp; Andrés Márquez; Augusto Beléndez; Inmaculada Pascual; John V. Kelly; John T. Sheridan

One of the most interesting applications of photopolymers is as holographic recording materials for holographic memories. One of the basic requirements for this application is that the recording material thickness must be 500 microm or thicker. In recent years many 2-dimensional models have been proposed for the analysis of photopolymers. Good agreement between theoretical simulations and experimental results has been obtained for layers thinner than 200 microm. The attenuation of the light inside the material by Beers law results in an attenuation of the index profile inside the material and in some cases the effective optical thickness of the material is lower than the physical thickness. This is an important and fundamental limitation in achieving high capacity holographic memories using photopolymers and cannot be analyzed using 2-D diffusion models. In this paper a model is proposed to describe the behavior of the photopolymers in 3-D. This model is applied to simulate the formation of profiles in depth for different photopolymer viscosities and different intensity attenuations inside the material.


Optics Express | 2003

Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material.

Cristian Neipp; Augusto Beléndez; Sergi Gallego; Manuel Ortuño; Inmaculada Pascual; John T. Sheridan

Some of the theoretical models in the literature describing the mechanism of hologram formation in photopolymer materials predict the existence of higher harmonics in the Fourier expansion of the recorded refractive index. Nevertheless, quantitative information is only obtained for the first harmonic of the refractive index using Kogelniks Coupled Wave Theory. In this work we apply the Rigorous Coupled Wave Theory to demonstrate that when recording phase diffraction gratings in PVA/acrylamide photopolymer materials, a second order grating is also recorded in the hologram even when the material is exposed to a sinusoidal interference pattern. The influence of this second order grating on the efficiency of the first order for replay at the first on-Bragg angular replay condition is studied and the size of the 2nd harmonic examined.


Revista Brasileira De Ensino De Fisica | 2007

Exact solution for the nonlinear pendulum

Augusto Beléndez; Carolina Pascual; David I. Méndez; Tarsicio Beléndez; Cristian Neipp

This paper deals with the nonlinear oscillation of a simple pendulum and presents not only the exact formula for the period but also the exact expression of the angular displacement as a function of the time, the amplitude of oscillations and the angular frequency for small oscillations. This angular displacement is written in terms of the Jacobi elliptic function sn(u;m) using the following initial conditions: the initial angular displacement is different from zero while the initial angular velocity is zero. The angular displacements are plotted using Mathematica, an available symbolic computer program that allows us to plot easily the function obtained. As we will see, even for amplitudes as high as 0.75p (135o) it is possible to use the expression for the angular displacement, but considering the exact expression for the angular frequency w in terms of the complete elliptic integral of the first kind. We can conclude that for amplitudes lower than 135o the periodic motion exhibited by a simple pendulum is practically harmonic but its oscillations are not isochronous (the period is a function of the initial amplitude). We believe that present study may be a suitable and fruitful exercise for teaching and better understanding the behavior of the nonlinear pendulum in advanced undergraduate courses on classical mechanics.


Journal of The Optical Society of America B-optical Physics | 2003

First-harmonic diffusion-based model applied to a polyvinyl-alcohol– acrylamide-based photopolymer

Cristian Neipp; Sergi Gallego; Manuel Ortuño; Andrés Márquez; Mariela L. Alvarez; Augusto Beléndez; Inmaculada Pascual

The photopolymerization diffusion models give accurate comprehension of the mechanism of hologram formation inside photopolymer materials. Although several models have been proposed, these models share the common assumption that there is an interplay between the processes of monomer polymerization and monomer diffusion. Nevertheless, most of the studies to check the validity of the theoretical models have been done by using photopolymers of the DuPont™ type, or photopolymer materials with values of the monomer diffusion time similar to those of the DuPont material. We check the applicability of a modified diffusion-based model to a polyvinyl alcohol–acrylamide photopolymer. This material has the property of longer diffusion times for the monomer to travel from the unexposed to the exposed zones than in the case of other polymeric materials. Some interesting effects are observed and theoretically treated by using the modified first-harmonic diffusion-based model we propose.

Collaboration


Dive into the Cristian Neipp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge