Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristian Staii is active.

Publication


Featured researches published by Cristian Staii.


Applied Physics Letters | 2003

Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm

Yangxin Zhou; Marcus Freitag; James Hone; Cristian Staii; A. T. Johnson; Nicholas J. Pinto; Alan G. MacDiarmid

We fabricate and electrically characterize electrospun nanofibers of doped polyaniline/polyethylene oxide (PAn/PEO) blend with sub-30 nm diameter. Fiber diameters near 5 nm are obtained for optimized process parameters. Scanning conductance microscopy (SCM) shows that fibers with diameter below 15 nm are electrically insulating; the small diameter may allow complete dedoping in air or be smaller than phase-separated grains of PAn and PEO. Electrical contacts to nanofibers are made by shadow mask evaporation with no chemical or thermal damage to the fibers. Single fiber I–V characteristics show that thin fibers conduct more poorly than thick ones, in agreement with SCM data. I–Vs of asymmetric fibers are rectifying, consistent with formation of Schottky barriers at the nanofiber-metal contacts.


Blood | 2015

Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies

Christian A. Di Buduo; Lindsay S. Wray; Lorenzo Tozzi; Alessandro Malara; Ying Chen; Chiara E. Ghezzi; Daniel Smoot; Carla Sfara; Antonella Antonelli; Elise Spedden; Giovanna Bruni; Cristian Staii; Luigi De Marco; Mauro Magnani; David L. Kaplan; Alessandra Balduini

We present a programmable bioengineered 3-dimensional silk-based bone marrow niche tissue system that successfully mimics the physiology of human bone marrow environment allowing us to manufacture functional human platelets ex vivo. Using stem/progenitor cells, megakaryocyte function and platelet generation were recorded in response to variations in extracellular matrix components, surface topography, stiffness, coculture with endothelial cells, and shear forces. Millions of human platelets were produced and showed to be functional based on multiple activation tests. Using adult hematopoietic progenitor cells our system demonstrated the ability to reproduce key steps of thrombopoiesis, including alterations observed in diseased states. A critical feature of the system is the use of natural silk protein biomaterial allowing us to leverage its biocompatibility, nonthrombogenic features, programmable mechanical properties, and surface binding of cytokines, extracellular matrix components, and endothelial-derived proteins. This in turn offers new opportunities for the study of blood component production ex vivo and provides a superior tissue system for the study of pathologic mechanisms of human platelet production.


Nature Communications | 2015

Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres

Shangchao Lin; Seunghwa Ryu; Olena Tokareva; Greta Gronau; Matthew M. Jacobsen; Wenwen Huang; Daniel Rizzo; David Li; Cristian Staii; Nicola Pugno; Joyce Wong; David L. Kaplan; Markus J. Buehler

Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Youngs modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.


Blood | 2011

Extracellular matrix structure and nano-mechanics determine megakaryocyte function.

Alessandro Malara; Cristian Gruppi; Isabella Pallotta; Elise Spedden; Ruggero Tenni; Mario Raspanti; David L. Kaplan; Maria Enrica Tira; Cristian Staii; Alessandra Balduini

Cell interactions with matrices via specific receptors control many functions, with chemistry, physics, and membrane elasticity as fundamental elements of the processes involved. Little is known about how biochemical and biophysical processes integrate to generate force and, ultimately, to regulate hemopoiesis into the bone marrow-matrix environment. To address this hypothesis, in this work we focus on the regulation of MK development by type I collagen. By atomic force microscopy analysis, we demonstrate that the tensile strength of fibrils in type I collagen structure is a fundamental requirement to regulate cytoskeleton contractility of human MKs through the activation of integrin-α2β1-dependent Rho-ROCK pathway and MLC-2 phosphorylation. Most importantly, this mechanism seemed to mediate MK migration, fibronectin assembly, and platelet formation. On the contrary, a decrease in mechanical tension caused by N-acetylation of lysine side chains in type I collagen completely reverted these processes by preventing fibrillogenesis.


International Journal of Molecular Sciences | 2013

Neuron Biomechanics Probed by Atomic Force Microscopy

Elise Spedden; Cristian Staii

Mechanical interactions play a key role in many processes associated with neuronal growth and development. Over the last few years there has been significant progress in our understanding of the role played by the substrate stiffness in neuronal growth, of the cell-substrate adhesion forces, of the generation of traction forces during axonal elongation, and of the relationships between the neuron soma elastic properties and its health. The particular capabilities of the Atomic Force Microscope (AFM), such as high spatial resolution, high degree of control over the magnitude and orientation of the applied forces, minimal sample damage, and the ability to image and interact with cells in physiologically relevant conditions make this technique particularly suitable for measuring mechanical properties of living neuronal cells. This article reviews recent advances on using the AFM for studying neuronal biomechanics, provides an overview about the state-of-the-art measurements, and suggests directions for future applications.


Nanotechnology | 2013

Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

Christopher Kehayias; Samuel MacNaughton; Sameer Sonkusale; Cristian Staii

Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.


Applied Physics Letters | 2012

Neuronal alignment on asymmetric textured surfaces

Ross Beighley; Elise Spedden; Koray Sekeroglu; Timothy J. Atherton; Melik C. Demirel; Cristian Staii

Axonal growth and the formation of synaptic connections are key steps in the development of the nervous system. Here, we present experimental and theoretical results on axonal growth and interconnectivity in order to elucidate some of the basic rules that neuronal cells use for functional connections with one another. We demonstrate that a unidirectional nanotextured surface can bias axonal growth. We perform a systematic investigation of neuronal processes on asymmetric surfaces and quantify the role that biomechanical surface cues play in neuronal growth. These results represent an important step towards engineering directed axonal growth for neuro-regeneration studies.


Nano Letters | 2008

Ligand-Induced Structural Changes in Maltose Binding Proteins Measured by Atomic Force Microscopy

Cristian Staii; David W. Wood; G. Scoles

We use atomic force microscopy (AFM) based force-compression measurements to probe the ligand-induced functional conformational changes in surface-immobilized dicysteine-terminated maltose binding proteins (dicys-MBPs). The proteins are immobilized at well-defined locations directly on Au substrates using the previously reported technique of nanografting. By measuring the difference between the ligand-free and ligand-bound mechanical work performed by the AFM-tip during the protein compression, we determine the open-closed transition energy for dicys-MBPs to be DeltaE0 = (8 +/- 4) Kcal/mol. We also compare the binding kinetics of two different ligands (maltose and maltotriose) to dicys-MBPs by performing AFM-friction measurements. We show that our results are consistent with a simple model for the surface-immobilized dicys-MBPs: the protein consists of two rigid lateral lobes connected by a hinge-loaded spring.


Advanced Materials | 2016

Stimuli-Responsive Free-Standing Layer-By-Layer Films

Xiaoran Hu; Ethan McIntosh; Marc Simon; Cristian Staii; Samuel W. Thomas

Free-standing, stimuli-responsive polyelectrolyte multilayer films enabled by light-induced degradation of sacrificial compartments are introduced. Two examples are described: i) a triple responsive film that uses light, redox, and pH for different functions, and ii) different wavelengths of light for different functions. This approach to multiresponsive materials offers simple design and chemical synthesis while enabling different stimuli to perform separate functions in the same material.


Nanotechnology | 2015

Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy.

Qais Iqbal; Peter Bernstein; Yazhe Zhu; Joseph Rahamim; Peggy Cebe; Cristian Staii

We use atomic force microscopy (AFM) to perform a systematic quantitative characterization of the elastic modulus and dielectric constant of poly(L-lactic acid) electrospun nanofibers (PLLA), as well as composites of PLLA fibers with 1.0 wt% embedded multiwall carbon nanotubes (MWCNTs-PLLA). The elastic moduli are measured in the fiber skin region via AFM nanoindentation, and the dielectric constants are determined by measuring the phase shifts obtained via electrostatic force microscopy (EFM). We find that the average value for the elastic modulus for PLLA fibers is (9.8 ± 0.9) GPa, which is a factor of 2 larger than the measured average elastic modulus for MWCNT-PLLA composites (4.1 ± 0.7) GPa. We also use EFM to measure dielectric constants for both types of fibers. These measurements show that the dielectric constants of the MWCNT-PLLA fibers are significantly larger than the corresponding values obtained for PLLA fiber. This result is consistent with the higher polarizability of the MWCNT-PLLA composites. The measurement methods presented are general, and can be applied to determine the mechanical and electrical properties of other polymers and polymer nanocomposites.

Collaboration


Dive into the Cristian Staii's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. T. Johnson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joyce Wong

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Markus J. Buehler

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michelle Chen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge