Cristian Tejos
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristian Tejos.
Magnetic Resonance Imaging | 2013
Pablo Bächler; Natalia Pinochet; Julio Sotelo; Gerard Crelier; Pablo Irarrazaval; Cristian Tejos; Sergio Uribe
OBJECTIVE The purpose of this study was to analyze flow patterns in the pulmonary circulation of healthy volunteers by using 4D flow magnetic resonance imaging. MATERIALS AND METHODS The study was approved by the local ethics committee and all subjects gave written informed consent. Eighteen volunteers underwent a 4D flow scan of the whole-heart. Two patients with congenital heart disease were also included to detect possible patterns of flow abnormalities (Patient 1: corrected transposition of great arteries (TGA); Patient 2: partial anomalous pulmonary venous return and atrial septal defect). To analyze flow patterns, 2D planes were placed on the main pulmonary artery (PA), left and right PA. Flow patterns were assessed manually by two independent viewers using vector fields, streamlines and particle traces, and semi-automatically by vorticity quantification. RESULTS Two counter-rotating helices were found in the main PA of volunteers. Right-handed helical flow was detected in the right PA of 15 volunteers. Analysis of the helical flow by particles traces revealed that both helices contributed mainly to the flow in the right PA. In the patient with corrected TGA helical flow was not detected. Abnormal vortical flow was visualized in the main PA of patient 2, suggesting elevated mean PA pressure. CONCLUSIONS Helical flow is normally present in the main PA and right PA. 4D flow is an excellent tool to evaluate noninvasively complex blood flow patterns in the pulmonary circulation. Knowledge of normal and abnormal flow patterns might help to evaluate patients with congenital heart disease adding functional information undetectable with other imaging modalities.
Radiology | 2013
Pablo Bächler; Israel Valverde; Natalia Pinochet; Sarah Nordmeyer; Titus Kuehne; Gérard R. Crelier; Cristian Tejos; Pablo Irarrazaval; Philipp Beerbaum; Sergio Uribe
PURPOSE To validate the use of particle traces derived from four-dimensional (4D) flow magnetic resonance (MR) imaging to quantify in vivo the caval flow contribution to the pulmonary arteries (PAs) in patients who had been treated with the Fontan procedure. MATERIALS AND METHODS The institutional review boards approved this study, and informed consent was obtained. Twelve healthy volunteers and 10 patients with Fontan circulation were evaluated. The particle trace method consists of creating a region of interest (ROI) on a blood vessel, which is used to emit particles with a temporal resolution of approximately 40 msec. The flow distribution, as a percentage, is then estimated by counting the particles arriving to different ROIs. To validate this method, two independent observers used particle traces to calculate the flow contribution of the PA to its branches in volunteers and compared it with the contribution estimated by measuring net forward flow volume (reference method). After the method was validated, caval flow contributions were quantified in patients. Statistical analysis was performed with nonparametric tests and Bland-Altman plots. P < .05 was considered to indicate a significant difference. RESULTS Estimation of flow contributions by using particle traces was equivalent to estimation by using the reference method. Mean flow contribution of the PA to the right PA in volunteers was 54% ± 3 (standard deviation) with the reference method versus 54% ± 3 with the particle trace method for observer 1 (P = .4) and 54% ± 4 versus 54% ± 4 for observer 2 (P = .6). In patients with Fontan circulation, 87% ± 13 of the superior vena cava blood flowed to the right PA (range, 63%-100%), whereas 55% ± 19 of the inferior vena cava blood flowed to the left PA (range, 22%-82%). CONCLUSION Particle traces derived from 4D flow MR imaging enable in vivo quantification of the caval flow distribution to the PAs in patients with Fontan circulation. This method might allow the identification of patients at risk of developing complications secondary to uneven flow distribution. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120778/-/DC1.
Radiology | 2011
Sergio Uribe; Tarique Hussain; Israel Valverde; Cristian Tejos; Pablo Irarrazaval; Mario Fava; Philipp Beerbaum; René M. Botnar; Reza Razavi; Tobias Schaeffter; Gerald Greil
PURPOSE To assess the optimal timing for coronary magnetic resonance (MR) angiography in children with congenital heart disease by using dual cardiac phase whole-heart MR imaging. MATERIALS AND METHODS The local institutional review board approved this study, and informed consent was obtained from parents or guardians. Thirty children (13 girls; overall mean age, 5.01 years) were examined with a 1.5-T MR system. A free-breathing three-dimensional steady-state free precession dual cardiac phase sequence was used to obtain MR angiographic data during end-systolic and middiastolic rest periods. Vessel length, diameter, and sharpness, as well as image quality of the coronary artery segments, were analyzed and compared by using Bland-Altman plots, linear regression analysis, the t test, and Wilcoxon signed rank tests. RESULTS Optimal coronary artery imaging timing was patient dependent and different for each coronary artery segment (36 segments favored end systole, 28 favored middiastole). In 15 patients (50%), different segments favored different cardiac phases within the same patient. Image quality and vessel sharpness degraded with higher heart rates, with a similar correlation for end systole (right coronary artery [RCA], 0.39; left main [LM] coronary artery, 0.46; left anterior descending [LAD] artery, 0.51; and left circumflex [LCX] artery, 0.50) and middiastole (RCA, 0.34; LM, 0.45; LAD, 0.48; and LCx, 0.55). Mean image quality difference or mean vessel sharpness difference showed no indication to prefer a specific cardiac phase. CONCLUSION The optimal cardiac rest period for coronary MR angiography in children with congenital heart disease is specific for each coronary artery segment. Dual cardiac phase whole-heart coronary MR angiography enables optimal coronary artery visualization by retrospectively choosing the optimal imaging rest period.
Medical Engineering & Physics | 2015
José Pinto; Cristobal Arrieta; Marcelo E. Andia; Sergio Uribe; Jorge Ramos-Grez; Alex Vargas; Pablo Irarrazaval; Cristian Tejos
Additive manufacturing (AM) models are used in medical applications for surgical planning, prosthesis design and teaching. For these applications, the accuracy of the AM models is essential. Unfortunately, this accuracy is compromised due to errors introduced by each of the building steps: image acquisition, segmentation, triangulation, printing and infiltration. However, the contribution of each step to the final error remains unclear. We performed a sensitivity analysis comparing errors obtained from a reference with those obtained modifying parameters of each building step. Our analysis considered global indexes to evaluate the overall error, and local indexes to show how this error is distributed along the surface of the AM models. Our results show that the standard building process tends to overestimate the AM models, i.e. models are larger than the original structures. They also show that the triangulation resolution and the segmentation threshold are critical factors, and that the errors are concentrated at regions with high curvatures. Errors could be reduced choosing better triangulation and printing resolutions, but there is an important need for modifying some of the standard building processes, particularly the segmentation algorithms.
International Journal of Computer Vision | 2009
Cristian Tejos; Pablo Irarrazaval; Arturo Cárdenas-Blanco
In volumetric medical imaging the boundaries of structures are frequently blurred due to insufficient resolution. This artefact is particularly serious in structures such as articular joints, where different cartilage surfaces appear to be linked at the contact regions. Traditional image segmentation techniques fail to separate such erroneously linked structures, and a sensible approach has been the introduction of prior-knowledge to the segmentation process. Although several 3D prior-knowledge based techniques that could successfully segment these structures have been published, most of them are pixel-labelling schemes that generate pixellated images with serious geometric distortions. The Simplex Mesh Diffusion Snakes segmentation technique presented here is an extension of the two dimensional Diffusion Snakes, but without any restriction on the number of dimensions of the data set. This technique integrates a Simplex Mesh, a region-based deformable model and Statistical Shape Knowledge into a single energy functional, so that it takes into account both the image information available directly from the data set, and the shape statistics obtained from a training process. The resulting segmentations converge correctly to well defined boundaries and provide a feasible location for those removed boundaries. The algorithm has been evaluated using 2D and 3D data sets obtained with Magnetic Resonance Imaging (MRI) and has proved to be robust to most of the MRI artefacts, providing continuous and smooth curves or surfaces with sub-pixel resolution. Additionally, this novel technique opens a wide range of opportunities for segmentation and tracking time-dependent 3D structures or data sets with more than three dimensions, due to its non-restrictive mathematical formulation.
Magnetic Resonance in Medicine | 2012
Vicente Parot; Carlos Sing-Long; Carlos Lizama; Cristian Tejos; Sergio Uribe; Pablo Irarrazaval
The classic paradigm for MRI requires a homogeneous B0 field in combination with linear encoding gradients. Distortions are produced when the B0 is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short‐bore magnets and higher B0 fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low‐field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second‐order component is key, because it constitutes the first step to approximate higher‐order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the objects magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field‐induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding. Magn Reson Med, 2012.
IEEE Transactions on Medical Imaging | 2016
Julio Sotelo; Jesus Urbina; Israel Valverde; Cristian Tejos; Pablo Irarrazaval; Marcelo E. Andia; Sergio Uribe; Daniel E. Hurtado
Several 2D methods have been proposed to estimate WSS and OSI from PC-MRI, neglecting the longitudinal velocity gradients that typically arise in cardiovascular flow, particularly on vessel geometries whose cross section and centerline orientation strongly vary in the axial direction. Thus, the contribution of longitudinal velocity gradients remains understudied. In this work, we propose a 3D finite-element method for the quantification of WSS and OSI from 3D-CINE PC-MRI that accounts for both in-plane and longitudinal velocity gradients. We demonstrate the convergence and robustness of the method on cylindrical geometries using a synthetic phantom based on the Poiseuille flow equation. We also show that, in the presence of noise, the method is both stable and accurate. Using computational fluid dynamics simulations, we show that the proposed 3D method results in more accurate WSS estimates than those obtained from a 2D analysis not considering out-of-plane velocity gradients. Further, we conclude that for irregular geometries the accurate prediction of WSS requires the consideration of longitudinal gradients in the velocity field. Additionally, we compute 3D maps of WSS and OSI for 3D-CINE PC-MRI data sets from an aortic phantom and sixteen healthy volunteers and two patients. The OSI values show a greater dispersion than WSS, which is strongly dependent on the PC-MRI resolution. We envision that the proposed 3D method will improve the estimation of WSS and OSI from 3D-CINE PC-MRI images, allowing for more accurate estimates in vessels with pathologies that induce high longitudinal velocity gradients, such as coarctations and aneurisms.
Human Brain Mapping | 2016
Pradyumna Sepulveda; Ranganatha Sitaram; Mohit Rana; Cristian Montalba; Cristian Tejos; Sergio Ruiz
The learning process involved in achieving brain self‐regulation is presumed to be related to several factors, such as type of feedback, reward, mental imagery, duration of training, among others. Explicitly instructing participants to use mental imagery and monetary reward are common practices in real‐time fMRI (rtfMRI) neurofeedback (NF), under the assumption that they will enhance and accelerate the learning process. However, it is still not clear what the optimal strategy is for improving volitional control. We investigated the differential effect of feedback, explicit instructions and monetary reward while training healthy individuals to up‐regulate the blood‐oxygen‐level dependent (BOLD) signal in the supplementary motor area (SMA). Four groups were trained in a two‐day rtfMRI‐NF protocol: GF with NF only, GF,I with NF + explicit instructions (motor imagery), GF,R with NF + monetary reward, and GF,I,R with NF + explicit instructions (motor imagery) + monetary reward. Our results showed that GF increased significantly their BOLD self‐regulation from day‐1 to day‐2 and GF,R showed the highest BOLD signal amplitude in SMA during the training. The two groups who were instructed to use motor imagery did not show a significant learning effect over the 2 days. The additional factors, namely motor imagery and reward, tended to increase the intersubject variability in the SMA during the course of training. Whole brain univariate and functional connectivity analyses showed common as well as distinct patterns in the four groups, representing the varied influences of feedback, reward, and instructions on the brain. Hum Brain Mapp 37:3153–3171, 2016.
Journal of Biomechanics | 2015
Julio Sotelo; Jesus Urbina; Israel Valverde; Cristian Tejos; Pablo Irarrazaval; Daniel E. Hurtado; Sergio Uribe
We present a computational method for calculating the distribution of wall shear stress (WSS) in the aorta based on a velocity field obtained from two-dimensional (2D) phase-contrast magnetic resonance imaging (PC-MRI) data and a finite-element method. The WSS vector was obtained from a global least-squares stress-projection method. The method was benchmarked against the Womersley model, and the robustness was assessed by changing resolution, noise, and positioning of the vessel wall. To showcase the applicability of the method, we report the axial, circumferential and magnitude of the WSS using in-vivo data from five volunteers. Our results showed that WSS values obtained with our method were in good agreement with those obtained from the Womersley model. The results for the WSS contour means showed a systematic but decreasing bias when the pixel size was reduced. The proposed method proved to be robust to changes in noise level, and an incorrect position of the vessel wall showed large errors when the pixel size was decreased. In volunteers, the results obtained were in good agreement with those found in the literature. In summary, we have proposed a novel image-based computational method for the estimation of WSS on vessel sections with arbitrary cross-section geometry that is robust in the presence of noise and boundary misplacements.
Pediatric Cardiology | 2013
Sergio Uribe; Pablo Bächler; Israel Valverde; Gérard R. Crelier; Philipp Beerbaum; Cristian Tejos; Pablo Irarrazaval
We report hemodynamic findings in two patients with pulmonary atresia and intact ventricular septum (PAIVS) after “one-and-a-half ventricle repair” and placement of a bidirectional Glenn shunt using four-dimensional (4D) flow magnetic resonance imaging. Quantification of flow and analysis of flow patterns revealed the hemodynamic “battle” between the right ventricle (RV) and the Glenn shunt. Moreover, with a novel approach we calculated during Glenn anastomosis the flow distribution from the superior vena cava (SVC) to the pulmonary arteries. Our results showed a highly asymmetric flow distribution, with most of the flow from the SVC toward the RV and not to the lungs. The evidence provided by 4D flow demonstrates poor efficiency of this system and suggests that both patients might benefit from adding an artificial pulmonary valve to avoid right heart failure.