Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristiana Caliceti is active.

Publication


Featured researches published by Cristiana Caliceti.


Free Radical Research | 2009

NAD(P)H oxidase isoform Nox2 plays a prosurvival role in human leukaemia cells.

Tullia Maraldi; Cecilia Prata; Francesco Vieceli Dalla Sega; Cristiana Caliceti; Laura Zambonin; Diana Fiorentini; Gabriele Hakim

The mechanism involved in the prosurvival effect of interleukin-3 on the human acute myeloid leukaemia cell line M07e is investigated. A decrease in intracellular reactive oxygen species (ROS) content, glucose transport activity and cell survival was observed in the presence of inhibitors of plasma membrane ROS sources, such as diphenylene iodonium and apocynin, and by small interference RNA for Nox2. Moreover, IL-3 incubation stimulated the synthesis of Nox2 cytosolic sub-unit p47phox and glucose transporter Glut1. Thus, the inhibition of ROS generation by Nox inhibitors stimulated apoptosis showing that ROS production, induced by IL-3 via Nox2, protects leukaemic cells from cell death. Also incubation with receptor tyrosine kinase inhibitors, such as anti-leukaemic drugs blocking the stem cell factor receptor (c-kit), showed similar effects, hinting that IL-3 transmodulates c-kit phosphorylation. These mechanisms may play an important role in acute myeloid leukaemia treatment, representing a novel therapeutic target.


Current Medicinal Chemistry | 2016

Berberine: New Insights from Pharmacological Aspects to Clinical Evidences in the Management of Metabolic Disorders

Cristiana Caliceti; Placido Franco; Silvia Spinozzi; Aldo Roda; Arrigo F.G. Cicero

Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids found in such plants as gender Berberis. Berberine is recognised to improve glucose and lipid metabolism disorders and preliminary clinical evidences suggest the ability of berberine to reduce endothelial inflammation improving vascular health, even in patients already affected by cardiovascular diseases, suggesting a possible interesting role of berberine and its metabolites in clinical practice. However, its physicochemical properties, pharmacokinetic, and metabolism are not fully elucidated and contradictory data have been reported. This review provides a summary regarding the pharmacological and biological features of berberine, with a focus on berberine as well as their pharmacologically active metabolites and the different mechanisms underlying their activities in order to clarify the correct use of berberine supplementation, alone or in association with other nutraceuticals, for the management of metabolic disorders associated to increased cardiovascular disease risk. A particular attention has also been given to the available clinical trials assessing its short- and middle- term use tolerability, safety and efficacy in various conditions, such as dyslipidaemia, impaired fasting glucose, metabolic syndrome and type 2 diabetes.


Nutrients | 2017

Fructose Intake, Serum Uric Acid, and Cardiometabolic Disorders: A Critical Review

Cristiana Caliceti; Donato Calabria; Aldo Roda; Arrigo F.G. Cicero

There is a direct relationship between fructose intake and serum levels of uric acid (UA), which is the final product of purine metabolism. Recent preclinical and clinical evidence suggests that chronic hyperuricemia is an independent risk factor for hypertension, metabolic syndrome, and cardiovascular disease. It is probably also an independent risk factor for chronic kidney disease, Type 2 diabetes, and cognitive decline. These relationships have been observed for high serum UA levels (>5.5 mg/dL in women and >6 mg/dL in men), but also for normal to high serum UA levels (5–6 mg/dL). In this regard, blood UA levels are much higher in industrialized countries than in the rest of the world. Xanthine-oxidase inhibitors can reduce UA and seem to minimize its negative effects on vascular health. Other dietary and pathophysiological factors are also related to UA production. However, the role of fructose-derived UA in the pathogenesis of cardiometabolic disorders has not yet been fully clarified. Here, we critically review recent research on the biochemistry of UA production, the relationship between fructose intake and UA production, and how this relationship is linked to cardiometabolic disorders.


Journal of Cellular Physiology | 2016

Characterization of Notch Signaling During Osteogenic Differentiation in Human Osteosarcoma Cell Line MG63

Alessia Ongaro; Agnese Pellati; Leila Bagheri; Paola Rizzo; Cristiana Caliceti; Leo Massari; Monica De Mattei

Osteogenic differentiation is a multi‐step process controlled by a complex molecular framework. Notch is an evolutionarily conserved intercellular signaling pathway playing a prominent role in cell fate and differentiation, although the mechanisms by which this pathway regulates osteogenesis remain controversial. This study aimed to investigate, in vitro, the involvement of Notch pathway during all the developmental stages of osteogenic differentiation in human osteosarcoma cell line MG63. Cells were cultured in basal condition (control) and in osteoinductive medium (OM). Notch inhibitors were also added in OM to block Notch pathway. During osteogenic differentiation, early (alkaline phosphatase activity and collagen type I) and late osteogenic markers (osteocalcin levels and matrix mineralization), as well as the gene expression of the main osteogenic transcription factors (Runx2, Osterix, and Dlx5) increased. Time dependent changes in the expression of specific Notch receptors were identified in OM versus control with a significant reduction in the expression of Notch1 and Notch3 receptors in the early phase of differentiation, and an increase of Notch2 and Notch4 receptors in the late phase. Among Notch nuclear target genes, Hey1 expression was significantly higher in OM than control, while Hes5 expression decreased. Osteogenic markers were reduced and Hey1 was significantly inhibited by Notch inhibitors, suggesting a role for Notch through the canonical pathway. In conclusion, Notch pathway might be involved with a dual role in osteogenesis of MG63, through the activation of Notch2, Notch4, and Hey1, inducing osteoblast differentiation and the depression of Notch1, Notch3, and Hes5, maintaining an undifferentiated status. J. Cell. Physiol. 231: 2652–2663, 2016.


Leukemia Research | 2010

Inhibition of trans-plasma membrane electron transport: A potential anti-leukemic strategy

Cecilia Prata; Carole Grasso; Stefano Loizzo; Francesco Vieceli Dalla Sega; Cristiana Caliceti; Laura Zambonin; Diana Fiorentini; Gabriele Hakim; Michael V. Berridge; Laura Landi

The recently demonstrated reliance of glycolytic cancer cells on trans-plasma membrane electron transport (tPMET) for survival raises the question of its suitability as a target for anticancer drug development. In this study, the effects of several new and known compounds on proliferation, tPMET activity and NAD(P)H intrinsic fluorescence in human myelogenous leukemic cell lines were investigated. The whole data confirm the importance of tPMET in leukemic cell survival and suggest this activity as a new potential anti-leukemic target.


Journal of Biological Chemistry | 2017

Estrogen receptor β-dependent Notch1 activation protects vascular endothelium against tumor necrosis factor α (TNFα)-induced apoptosis

Francesca Fortini; Francesco Vieceli Dalla Sega; Cristiana Caliceti; Giorgio Aquila; Micaela Pannella; Antonio Pannuti; Lucio Miele; Roberto Ferrari; Paola Rizzo

Unlike age-matched men, premenopausal women benefit from cardiovascular protection. Estrogens protect against apoptosis of endothelial cells (ECs), one of the hallmarks of endothelial dysfunction leading to cardiovascular disorders, but the underlying molecular mechanisms remain poorly understood. The inflammatory cytokine TNFα causes EC apoptosis while dysregulating the Notch pathway, a major contributor to EC survival. We have previously reported that 17β-estradiol (E2) treatment activates Notch signaling in ECs. Here, we sought to assess whether in TNFα-induced inflammation Notch is involved in E2-mediated protection of the endothelium. We treated human umbilical vein endothelial cells (HUVECs) with E2, TNFα, or both and found that E2 counteracts TNFα-induced apoptosis. When Notch1 was inhibited, this E2-mediated protection was not observed, whereas ectopic overexpression of Notch1 diminished TNFα-induced apoptosis. Moreover, TNFα reduced the levels of active Notch1 protein, which were partially restored by E2 treatment. Moreover, siRNA-mediated knockdown of estrogen receptor β (ERβ), but not ERα, abolished the effect of E2 on apoptosis. Additionally, the E2-mediated regulation of the levels of active Notch1 was abrogated after silencing ERβ. In summary, our results indicate that E2 requires active Notch1 through a mechanism involving ERβ to protect the endothelium in TNFα-induced inflammation. These findings could be relevant for assessing the efficacy and applicability of menopausal hormone treatment, because they may indicate that in women with impaired Notch signaling, hormone therapy might not effectively protect the endothelium.


Analytical and Bioanalytical Chemistry | 2018

Advanced bioanalytics for precision medicine

Aldo Roda; Elisa Michelini; Cristiana Caliceti; Massimo Guardigli; Mara Mirasoli; Patrizia Simoni

AbstractPrecision medicine is a new paradigm that combines diagnostic, imaging, and analytical tools to produce accurate diagnoses and therapeutic interventions tailored to the individual patient. This approach stands in contrast to the traditional “one size fits all” concept, according to which researchers develop disease treatments and preventions for an “average” patient without considering individual differences. The “one size fits all” concept has led to many ineffective or inappropriate treatments, especially for pathologies such as Alzheimer’s disease and cancer. Now, precision medicine is receiving massive funding in many countries, thanks to its social and economic potential in terms of improved disease prevention, diagnosis, and therapy. Bioanalytical chemistry is critical to precision medicine. This is because identifying an appropriate tailored therapy requires researchers to collect and analyze information on each patient’s specific molecular biomarkers (e.g., proteins, nucleic acids, and metabolites). In other words, precision diagnostics is not possible without precise bioanalytical chemistry. This Trend article highlights some of the most recent advances, including massive analysis of multilayer omics, and new imaging technique applications suitable for implementing precision medicine. Graphical abstractPrecision medicine combines bioanalytical chemistry, molecular diagnostics, and imaging tools for performing accurate diagnoses and selecting optimal therapies for each patient.


Journal of Physiology and Pharmacology | 2018

Heart rate reduction with ivabradine in the early phase of atherosclerosis is protective in the endothelium of ApoE-deficient mice

Giorgio Aquila; Mb Morelli; Fvd Sega; Francesca Fortini; P Nigro; Cristiana Caliceti; Manuela Ferracin; Massimo Negrini; Antonio Pannuti; Massimo Bonora; Paolo Pinton; Roberto Ferrari; Paola Rizzo

Ivabradine, a heart rate reducing agent, protects the vascular system by unidentified mechanisms. We sought to determine the effects of the treatment with ivabradine, started before plaque formation, on early transcriptional changes and endothelium lesions in regions of aorta subjected to disturbed blood flow. Six week-old apolipoprotein E-deficient (ApoE-/-) mice, fed a low-fat diet, were treated with ivabradine to determine the effect on transcriptional changes (2-and 4-week treatment) and on lesions formation (19-week treatment) in the endothelium of the aortic arch. Microarrays analysis (60k probes) of endothelium-enriched RNA was carried out to detect changes in gene expression induced by treatment. Endothelium damage was assessed by en-face immunofluorescence staining for vascular endothelial (VE) cadherin. According to microarray analysis, 930 transcripts were affected by the treatment. We found downregulation of pro-apoptotic and pro-inflammatory genes, the majority of which are nuclear factor-κB (NF-κB)-and/or angiotensin II-regulated genes, and upregulation of anti-inflammatory genes. Many shear stress-responsive genes were affected by the treatment and the MAPK, Notch signalling and sterol metabolic processes were among the most significantly affected pathways. Consistently, we observed increased levels of Hes5, a Notch target gene, together with a reduction of endothelium damage, in the lower aortic arch of treated- compared with untreated- mice. We concluded that an early treatment with ivabradine protected the endothelium of the aortic arch of ApoE-/- mice. Activation of the Notch signalling could be part of the mechanism underlying this protection.


Journal of Translational Medicine | 2017

Distinct gene expression profiles associated with Notch ligands Delta-like 4 and Jagged1 in plaque material from peripheral artery disease patients: a pilot study

Giorgio Aquila; Cinzia Fortini; Antonio Pannuti; Serena Delbue; Micaela Pannella; Marco Bruno Morelli; Cristiana Caliceti; Fausto Castriota; Monica De Mattei; Alessia Ongaro; Agnese Pellati; Pasquale Ferrante; Lucio Miele; Luigi Tavazzi; Roberto Ferrari; Paola Rizzo; Alberto Cremonesi

BackgroundThe lack of early diagnosis, progression markers and effective pharmacological treatment has dramatic unfavourable effects on clinical outcomes in patients with peripheral artery disease (PAD). Addressing these issues will require dissecting the molecular mechanisms underlying this disease. We sought to characterize the Notch signaling and atherosclerosis relevant markers in lesions from femoral arteries of symptomatic PAD patients.MethodsPlaque material from the common femoral, superficial femoral or popliteal arteries of 20 patients was removed by directional atherectomy. RNA was obtained from 9 out of 20 samples and analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR).ResultsWe detected expression of Notch ligands Delta-like 4 (Dll4) and Jagged1 (Jag1), of Notch target genes Hes1, Hey1, Hey2, HeyL and of markers of plaque inflammation and stability such as vascular cell adhesion molecule 1 (VCAM1), smooth muscle 22 (SM22), cyclooxygenase 2 (COX2), Bcl2, CD68 and miRNAs 21-5p, 125a-5p, 126-5p,146-5p, 155-5p, 424-5p. We found an “inflamed plaque” gene expression profile characterized by high Dll4 associated to medium/high CD68, COX2, VCAM1, Hes1, miR126-5p, miR146a-5p, miR155-5p, miR424-5p and low Jag1, SM22, Bcl2, Hey2, HeyL, miR125a-5p (2/9 patients) and a “stable plaque” profile characterized by high Jag1 associated to medium/high Hey2, HeyL, SM22, Bcl2, miR125a and low Dll4, CD68, COX2, VCAM1, miR126-5p, miR146a-5p, miR155-5p, miR424-5p (3/9 patients). The remaining patients (4/9) showed a plaque profile with intermediate characteristics.ConclusionsThis study reveals the existence of a gene signature associated to Notch activation by specific ligands that could be predictive of PAD progression.


International Journal of Oncology | 2010

VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis

Tullia Maraldi; Cecilia Prata; Cristiana Caliceti; Francesco Vieceli Dalla Sega; Laura Zambonin; Diana Fiorentini; Gabriele Hakim

Collaboration


Dive into the Cristiana Caliceti's collaboration.

Top Co-Authors

Avatar

Aldo Roda

University of Bologna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge