Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristiana Garofalo is active.

Publication


Featured researches published by Cristiana Garofalo.


The EMBO Journal | 2001

Translation initiation factor IF3: two domains, five functions, one mechanism?

Dezemona Petrelli; Anna La Teana; Cristiana Garofalo; Roberto Spurio; Cynthia L. Pon; Claudio O. Gualerzi

Initiation factor IF3 contains two domains separated by a flexible linker. While the isolated N‐domain displayed neither affinity for ribosomes nor a detectable function, the isolated C‐domain, added in amounts compensating for its reduced affinity for 30S subunits, performed all activities of intact IF3, namely: (i) dissociation of 70S ribosomes; (ii) shift of 30S‐bound mRNA from ‘stand‐by’ to ‘P‐decoding’ site; (iii) dissociation of 30S–poly(U)–NacPhe‐tRNA pseudo‐ initiation complexes; (iv) dissociation of fMet‐tRNA from initiation complexes containing mRNA with the non‐canonical initiation triplet AUU (AUUmRNA); (v) stimulation of mRNA translation regardless of its start codon and inhibition of AUUmRNA translation at high IF3C/ribosome ratios. These results indicate that while IF3 performs all its functions through a C‐domain–30S interaction, the N‐domain function is to provide additional binding energy so that its fluctuating interaction with the 30S subunit can modulate the thermodynamic stability of the 30S–IF3 complex and IF3 recycling. The localization of IF3C far away from the decoding site and anticodon stem–loop of P‐site‐bound tRNA indicates that the IF3 fidelity function does not entail its direct contact with these structures.


Food Microbiology | 2015

Bacteria and yeast microbiota in milk kefir grains from different Italian regions

Cristiana Garofalo; Andrea Osimani; Vesna Milanović; Lucia Aquilanti; Francesca De Filippis; Giuseppina Stellato; Simone Di Mauro; Benedetta Turchetti; Pietro Buzzini; Danilo Ercolini; Francesca Clementi

Kefir grains are a unique symbiotic association of different microrganisms, mainly lactic acid bacteria, yeasts and occasionally acetic acid bacteria, cohabiting in a natural polysaccharide and a protein matrix. The microbial composition of kefir grains can be considered as extremely variable since it is strongly influenced by the geographical origin of the grains and by the sub-culturing method used. The aim of this study was to elucidate the bacteria and yeast species occurring in milk kefir grains collected in some Italian regions by combining the results of scanning electron microscopy analysis, viable counts on selective culture media, PCR-DGGE and pyrosequencing. The main bacterial species found was Lactobacillus kefiranofaciens while Dekkera anomala was the predominant yeast. The presence of sub-dominant species ascribed to Streptococcus thermophilus, Lactococcus lactis and Acetobacter genera was also highlighted. In addition, Lc. lactis, Enterococcus sp., Bacillus sp., Acetobacter fabarum, Acetobacter lovaniensis and Acetobacter orientalis were identified as part of the cultivable community. This work further confirms both the importance of combining culture-independent and culture-dependent approaches to study microbial diversity in food and how the combination of multiple 16S rRNA gene targets strengthens taxonomic identification using sequence-based identification approaches.


International Journal of Food Microbiology | 2015

Unpasteurised commercial boza as a source of microbial diversity

Andrea Osimani; Cristiana Garofalo; Lucia Aquilanti; Vesna Milanović; Francesca Clementi

Boza is a cereal-based fermented beverage widely consumed in many countries of the Balkans. The aim of this study was to investigate the microbiota of three Bulgarian boza samples through a combination of culture-dependent and -independent methods with the long-term objective of formulating a multi-strain starter culture specifically destined for the manufacture of new cereal-based drinks. The isolation campaign for lactic acid bacteria (LAB) allowed the identification of Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus coryniformis, Lactobacillus buchneri, Pediococcus parvulus and members of the Lactobacillus casei group. Concerning yeasts, the following isolates were identified: Pichia fermentans, Pichia norvegensis, Pichia guilliermondii (synonym Meyerozyma guilliermondii) and Torulaspora spp. A high intra-species diversity was revealed by Randomly Amplified Polymorphic DNA (RAPD) analysis. In parallel, microbial DNA was directly extracted from the three boza samples, and portions of the rrn operons were analysed through Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The molecular fingerprinting partially confirmed the results of culturing. Among LAB, the species Weissella confusa, Weissella oryzae, Leuconostoc citreum, Lactococcus lactis, Pediococcus parvulus and Pediococcus ethanolidurans were detected together with members of the Lb. casei group. Among the yeasts, the species P. fermentans, M. guilliermondii, Galactomyces geotrichum and Geotrichum fragrans were found. The overall results confirmed boza as having a rich and heterogeneous biodiversity both in terms of species and genetically diverse strains, thus encouraging its exploitation for the isolation and future technological characterisation of cultures to be selected for the manufacture of innovative cereal-based drinks.


Food Microbiology | 2017

The microbiota of marketed processed edible insects as revealed by high-throughput sequencing

Cristiana Garofalo; Andrea Osimani; Vesna Milanović; Manuela Taccari; Federica Cardinali; Lucia Aquilanti; Paola Riolo; Sara Ruschioni; Nunzio Isidoro; Francesca Clementi

Entomophagy has been linked to nutritional, economic, social and ecological benefits. However, scientific studies on the potential safety risks in eating edible insects need to be carried out for legislators, markets and consumers. In this context, the microbiota of edible insects deserves to be deeply investigated. The aim of this study was to elucidate the microbial species occurring in some processed marketed edible insects, namely powdered small crickets, whole dried small crickets (Acheta domesticus), whole dried locusts (Locusta migratoria), and whole dried mealworm larvae (Tenebrio molitor), through culture-dependent (classical microbiological analyses) and -independent methods (pyrosequencing). A great bacterial diversity and variation among insects was seen. Relatively low counts of total mesophilic aerobes, Enterobacteriaceae, lactic acid bacteria, Clostridium perfringens spores, yeasts and moulds in all of the studied insect batches were found. Furthermore, the presence of several gut-associated bacteria, some of which may act as opportunistic pathogens in humans, were found through pyrosequencing. Food spoilage bacteria were also identified, as well as Spiroplasma spp. in mealworm larvae, which has been found to be related to neurodegenerative diseases in animals and humans. Although viable pathogens such as Salmonella spp. and Listeria monocytogenes were not detected, the presence of Listeria spp., Staphylococcus spp., Clostridium spp. and Bacillus spp. (with low abundance) was also found through pyrosequencing. The results of this study contribute to the elucidation of the microbiota associated with edible insects and encourage further studies aimed to evaluate the influence of rearing and processing conditions on that microbiota.


Journal of Agricultural and Food Chemistry | 2012

Selection of sourdough lactobacilli with antifungal activity for use as biopreservatives in bakery products.

Cristiana Garofalo; Emanuele Zannini; Lucia Aquilanti; Gloria Silvestri; Olga Fierro; Gianluca Picariello; Francesca Clementi

Two hundred and sixteen LAB cultures from sourdoughs and dough for bread and panettone production were screened for in vitro antifungal properties against three indicator cultures ascribed to Aspergillus japonicus , Eurotium repens , and Penicillium roseopurpureum , isolated from bakery environment and moldy panettone. Nineteen preselected isolates were subjected to minimum inhibitory concentration determination against the indicator cultures. Sourdoughs prepared with the two most promising strains, identified as Lactobacillus rossiae LD108 and Lactobacillus paralimentarius PB127, were characterized. The sourdough extracts were subjected to HPLC analysis coupled with a microtiter plate bioassay against A. japonicus to identify the active fractions. MALDI-TOF MS analysis revealed the occurrence of a series of peptides corresponding to wheat α-gliadin proteolysis fragments in the active fraction from L. rossiae LD108 sourdough. The ability to prevent mold growth on bread was demonstrated for both strains, whereas L. rossiae LD108 also inhibited mold growth on panettone.


European Food Research and Technology | 2017

Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union

Andrea Osimani; Cristiana Garofalo; Vesna Milanović; Manuela Taccari; Federica Cardinali; Lucia Aquilanti; Marina Pasquini; Massimo Mozzon; Nadia Raffaelli; Sara Ruschioni; Paola Riolo; Nunzio Isidoro; Francesca Clementi

In recent years, the idea of exploiting edible insects for their industrial production has attracted the attention of media, research institutions and food industry operators, because of the numerous positive factors associated with this food source. Notwithstanding, insects are still underutilized in Western countries. Moreover, edible insects are carriers of natural microorganisms; hence, safety issues may arise from their industrial production. This study was aimed at providing insight into the proximate composition, with a focus in the fatty acid and amino acid composition, and microbial diversity of some processed edible insects marketed in the European Union. A high content of protein and fat was seen, with values ranging from 59.46 to 46.78 and 35.32 to 15.18%, respectively, with nutritionally valuable characteristics in both the lipid fractions and amino acid profiles. Furthermore, a great variation in microbial counts was seen. Both commensal and potential pathogenic microorganisms ascribed to the genera Pediococcus, Weissella, Streptomyces, Acinetobacter, Agrococcus, Arthrobacter, Naxibacter, Planomicrobium, Rufibacter, Bacillus, Clostridium, Vibrio, Desulfovibrio, Loktanella, Escherichia, Tetrapisispora, Aspergillus, Eurotium, Debaryomyces, and Wallemia, were identified by PCR-DGGE. The high diversity in the chemical composition and microbial profile of the marketed edible insects analyzed suggest a role of both the rearing and processing procedures on these variables. The results overall collected encourage the exploitation of edible insects as a valuable large-scale, animal-based commodity.


International Journal of Environmental Research and Public Health | 2014

Bioluminescence ATP monitoring for the routine assessment of food contact surface cleanliness in a university canteen.

Andrea Osimani; Cristiana Garofalo; Francesca Clementi; Stefano Tavoletti; Lucia Aquilanti

ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99) between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene.


Journal of Molecular Biology | 2003

Mapping the Active Sites of Bacterial Translation Initiation Factor IF3

Dezemona Petrelli; Cristiana Garofalo; Matilde Lammi; Roberto Spurio; Cynthia L. Pon; Claudio O. Gualerzi; Anna La Teana

IF3C is the C-terminal domain of Escherichia coli translation initiation factor 3 (IF3) and is responsible for all functions of this translation initiation factor but for its ribosomal recycling. To map the number and nature of the active sites of IF3 and to identify the essential Arg residue(s) chemically modified with 2,3-butanedione, the eight arginine residues of IF3C were substituted by Lys, His, Ser and Leu, generating 32 variants that were tested in vitro for all known IF3 activities. The IF3-30S subunit interaction was inhibited strongly by substitutions of Arg99, Arg112, Arg116, Arg147 and Arg168, the positive charges being important at positions 116 and 147. The 70S ribosome dissociation was affected by mutations of Arg112, Arg147 and, to a lesser extent, of Arg99 and Arg116. Pseudo-initiation complex dissociation was impaired by substitution of Arg99 and Arg112 (whose positive charges are important) and, to a lesser extent, of Arg116, Arg129, Arg133 and Arg147, while the dissociation of non-canonical 30S initiation complexes was preserved at wild-type levels in all 32 mutants. Stimulation of mRNA translation was reduced by mutations of Arg116, Arg129 and, to a lesser extent, of Arg99, Arg112 and Arg131 whereas inhibition of non-canonical mRNA translation was affected by substitutions of Arg99, Arg112, Arg168 and, to a lesser extent, Arg116, Arg129 and Arg131. Finally, repositioning the mRNA on the 30S subunit was affected weakly by mutations of Arg133, Arg131, Arg168, Arg147 and Arg129. Overall, the results define two active surfaces in IF3C, and indicate that the different functions of IF3 rely on different molecular mechanisms involving separate active sites.


Journal of Food Science | 2015

The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

Cristiana Garofalo; Andrea Osimani; Vesna Milanović; Manuela Taccari; Lucia Aquilanti; Francesca Clementi

Beer is one of the worlds most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant.


International Journal of Food Microbiology | 2016

Getting insight into the prevalence of antibiotic resistance genes in specimens of marketed edible insects.

Vesna Milanović; Andrea Osimani; Marina Pasquini; Lucia Aquilanti; Cristiana Garofalo; Manuela Taccari; Federica Cardinali; Paola Riolo; Francesca Clementi

This study was aimed at investigating the occurrence of 11 transferable antibiotic resistance (AR) genes [erm(A), erm(B), erm(C), vanA, vanB, tet(M), tet(O), tet(S), tet(K), mecA, blaZ] in 11 species of marketed edible insects (small crickets powder, small crickets, locusts, mealworm larvae, giant waterbugs, black ants, winged termite alates, rhino beetles, mole crickets, silkworm pupae, and black scorpions) in order to provide a first baseline for risk assessment. Among the AR genes under study, tet(K) occurred with the highest frequency, followed by erm(B), tet(S) and blaZ. A high variability was seen among the samples, in terms of occurrence of different AR determinants. Cluster Analysis and Principal Coordinates Analysis allowed the 11 samples to be grouped in two main clusters, one including all but one samples produced in Thailand and the other including those produced in the Netherlands.

Collaboration


Dive into the Cristiana Garofalo's collaboration.

Top Co-Authors

Avatar

Francesca Clementi

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Lucia Aquilanti

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Andrea Osimani

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Vesna Milanović

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Federica Cardinali

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Manuela Taccari

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Serena Polverigiani

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Marina Pasquini

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Gloria Silvestri

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Massimo Mozzon

Marche Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge