Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristiana Guiducci is active.

Publication


Featured researches published by Cristiana Guiducci.


Science Translational Medicine | 2011

Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus

Gina S. Garcia-Romo; Simone Caielli; Barbara Vega; John Connolly; Florence Allantaz; Zhaohui Xu; Marilynn Punaro; Jeanine Baisch; Cristiana Guiducci; Robert L. Coffman; Franck J. Barrat; Jacques Banchereau; Virginia Pascual

In systemic lupus erythematosus, neutrophil extracellular traps activate plasmacytoid dendritic cells to produce type I interferon. Lupus Neutrophils Cast a Wide NET Systemic lupus erythematosus, also known as SLE or lupus, is a systemic, chronic autoimmune disease that can affect the skin, joints, kidneys, and other organs. In lupus, the body’s immune system turns against antigens in the body’s own nuclei, with activated B cells producing antibodies against self-DNA and associated proteins. The resulting immune complexes accumulate in the body, causing inflammation and tissue damage. Now, two new studies, by Lande et al. and Garcia-Romo et al., demonstrate a role for neutrophils and the “neutrophil extracellular traps,” a specialized structure they release when activated, in the pathogenesis of the disease. A key characteristic of lupus is the presence of chronically activated plasmacytoid dendritic cells, which secrete type I interferons. Lupus patients also display increased numbers of immature neutrophils in the blood, but the exact role of neutrophils in the disease had been unclear. Lande et al. began with the observation that patient serum contains immunogenic complexes that include the antimicrobial peptide LL37, human neutrophil peptide (HNP), and self-DNA. These complexes are taken up by and activate dendritic cells, and patients carry antibodies directed against LL37, HNP, and self-DNA. What is the origin of these complexes? Activated neutrophils can undergo NETosis, a particular type of cell death in which their nuclear DNA is released in long chromatin filaments that form web-like structures, neutrophil extracellular traps (NETs). NETs contain antimicrobial peptides, and can entrap bacteria, enabling them to be killed. Lande et al. now show that the anti-LL37 and anti-HNP antibodies present in lupus patient serum can activate neutrophils and induce them to release NETs. Patient-derived neutrophils release more NETs upon exposure to antibody than control neutrophils. In a parallel study, Garcia-Romo et al. look in detail at neutrophils in lupus, and show that lupus patient neutrophils undergo accelerated cell death in culture. Anti-ribonucleoprotein antibodies present in patient serum induce NETosis, and the released NETs contain LL37 and another neutrophil protein, HMGB1. Induction of NETosis requires FcRIIa, signaling through the pattern recognition receptor Toll-like receptor 7, and formation of reactive oxygen species. Garcia-Romo et al. also show that these NETs potently activate dendritic cells, leading to secretion of high levels of interferon-α. Together, these findings portray an important role for neutrophils in lupus pathogenesis, whereby neutrophils activated by anti-self antibodies release NETs. These NETs, which contain antimicrobial peptides complexed with self-DNA, activate plasmacytoid dendritic cells, leading to interferon release and furtherment and aggravation of inflammation and disease. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a breakdown of tolerance to nuclear antigens and the development of immune complexes. Genomic approaches have shown that human SLE leukocytes homogeneously express type I interferon (IFN)–induced and neutrophil-related transcripts. Increased production and/or bioavailability of IFN-α and associated alterations in dendritic cell (DC) homeostasis have been linked to lupus pathogenesis. Although neutrophils have long been shown to be associated with lupus, their potential role in disease pathogenesis remains elusive. Here, we show that mature SLE neutrophils are primed in vivo by type I IFN and die upon exposure to SLE-derived anti-ribonucleoprotein antibodies, releasing neutrophil extracellular traps (NETs). SLE NETs contain DNA as well as large amounts of LL37 and HMGB1, neutrophil proteins that facilitate the uptake and recognition of mammalian DNA by plasmacytoid DCs (pDCs). Indeed, SLE NETs activate pDCs to produce high levels of IFN-α in a DNA- and TLR9 (Toll-like receptor 9)–dependent manner. Our results reveal an unsuspected role for neutrophils in SLE pathogenesis and identify a novel link between nucleic acid–recognizing antibodies and type I IFN production in this disease.


Cancer Research | 2005

Redirecting In vivo Elicited Tumor Infiltrating Macrophages and Dendritic Cells towards Tumor Rejection

Cristiana Guiducci; Alain Vicari; Sabina Sangaletti; Giorgio Trinchieri; Mario P. Colombo

A hostile tumor microenvironment interferes with the development and function of the adaptive immune response. Here we report the mechanisms by which large numbers of tumor-infiltrating macrophages and dendritic cells (DC) can be redirected to become potent effectors and activators of the innate and adaptive immunity, respectively. We use adenoviral delivery of the CCL16 chemokine to promote accumulation of macrophages and DC at the site of preestablished tumor nodules, combined with the Toll-like receptor 9 ligand CpG and with anti-interleukin-10 receptor antibody. CpG plus anti-interleukin-10 receptor antibody promptly switched infiltrating macrophages infiltrate from M2 to M1 and triggered innate response debulking large tumors within 16 hours. Tumor-infiltrating DC matured and migrated in parallel with the onset of the innate response, allowing the triggering of adaptive immunity before the diffuse hemorrhagic necrosis halted the communication between tumor and draining lymph nodes. Treatment of B6>CXB6 chimeras implanted with BALB/c tumors with the above combination induced an efficient innate response but not CTL-mediated tumor lysis. In these mice, tumor rejection did not exceed 25%, similarly to that observed in CCR7-null mice that have DC unable to prime an adaptive response. The requirement of CD4 help was shown in CD40-KO, as well as in mice depleted of CD4 T cells, during the priming rather than the effector phase. Our data describe the critical requirements for the immunologic rejection of large tumors: a hemorrhagic necrosis initiated by activated M1 macrophages and a concomitant DC migration to draining lymph nodes for subsequent CTL priming and clearing of any tumor remnants.


Journal of Experimental Medicine | 2006

Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation

Cristiana Guiducci; Gary Ott; Jean H. Chan; Emily Damon; Carlo Calacsan; Tracy Matray; Kyung Dall Lee; Robert L. Coffman; Franck J. Barrat

Human plasmacytoid dendritic cells (PDCs) can produce interferon (IFN)-α and/or mature and participate in the adaptive immune response. Three classes of CpG oligonucleotide ligands for Toll-like receptor (TLR)9 can be distinguished by different sequence motifs and different abilities to stimulate IFN-α production and maturation of PDCs. We show that the nature of the PDC response is determined by the higher order structure and endosomal location of the CpG oligonucleotide. Activation of TLR9 by the multimeric CpG-A occurs in transferrin receptor (TfR)-positive endosomes and leads exclusively to IFN-α production, whereas monomeric CpG-B oligonucleotides localize to lysosome-associated membrane protein (LAMP)-1–positive endosomes and promote maturation of PDCs. However, CpG-B, when complexed into microparticles, localizes in TfR-positive endosomes and induces IFN-α from PDCs, whereas monomeric forms of CpG-A localize to LAMP-1–positive endosomes accompanied by the loss of IFN-α production and a gain in PDC maturation activity. CpG-C sequences, which induce both IFN-α and maturation of PDCs, are distributed in both type of endosomes. Encapsulation of CpG-C in liposomes stable above pH 5.75 completely abrogated the IFN-α response while increasing PDC maturation. This establishes that the primary determinant of TLR9 signaling is not valency but endosomal location and demonstrates a strict compartmentalization of the biological response to TLR9 activation in PDCs.


European Journal of Immunology | 2007

Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms

Franck J. Barrat; Thea Meeker; Jean H. Chan; Cristiana Guiducci; Robert L. Coffman

The presence of autoantibodies specific for nucleic acid‐associated antigens is the hallmark of systemic lupus erythematosus (SLE). We have recently developed a specific inhibitor of TLR7 and TLR9, called immunoregulatory sequence (IRS) 954, and showed that it inhibits the induction of IFN‐α by human plasmacytoid dendritic cells in response to DNA and RNA viruses and isolated immune complexes from lupus patients. In this study, we show that IRS 954 can prevent progression of disease when injected in the lupus prone (NZB x NZW)F1 mice. Following treatment, we observed a significant reduction of serum levels of nucleic acid‐specific autoantibodies as well as decreased proteinuria, reduced glomerulonephritis, end‐organ damage and increased survival. These data demonstrate that in addition to its ability to block IFN‐α, IRS 954 can reduce symptoms in a lupus model and thus represents a promising therapeutic agent for the treatment of SLE.


Nature | 2010

TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus

Cristiana Guiducci; Mei Gong; Zhaohui Xu; Michelle A. Gill; Damien Chaussabel; Thea Meeker; Jean H. Chan; Tracey Wright; Marilynn Punaro; Silvia Bolland; Vassili Soumelis; Jacques Banchereau; Robert L. Coffman; Virginia Pascual; Franck J. Barrat

Glucocorticoids are widely used to treat patients with autoimmune diseases such as systemic lupus erythematosus (SLE). However, regimens used to treat many such conditions cannot maintain disease control in the majority of SLE patients and more aggressive approaches such as high-dose methylprednisolone pulse therapy are used to provide transient reductions in disease activity. The primary anti-inflammatory mechanism of glucocorticoids is thought to be NF-κB inhibition. Recognition of self nucleic acids by toll-like receptors TLR7 and TLR9 on B cells and plasmacytoid dendritic cells (PDCs) is an important step in the pathogenesis of SLE, promoting anti-nuclear antibodies and the production of type I interferon (IFN), both correlated with the severity of disease. Following their activation by self-nucleic acid-associated immune complexes, PDCs migrate to the tissues. We demonstrate, in vitro and in vivo, that stimulation of PDCs through TLR7 and 9 can account for the reduced activity of glucocorticoids to inhibit the IFN pathway in SLE patients and in two lupus-prone mouse strains. The triggering of PDCs through TLR7 and 9 by nucleic acid-containing immune complexes or by synthetic ligands activates the NF-κB pathway essential for PDC survival. Glucocorticoids do not affect NF-κB activation in PDCs, preventing glucocorticoid induction of PDC death and the consequent reduction of systemic IFN-α levels. These findings unveil a new role for self nucleic acid recognition by TLRs and indicate that inhibitors of TLR7 and 9 signalling could prove to be effective corticosteroid-sparing drugs.


Cancer Research | 2006

Tumor-Induced Expansion of Regulatory T Cells by Conversion of CD4+CD25− Lymphocytes Is Thymus and Proliferation Independent

Barbara Valzasina; Silvia Piconese; Cristiana Guiducci; Mario P. Colombo

The CD25- and CD25+ CD4 T-lymphocyte compartments are tightly regulated. We show here that tumors break such balance, increasing the number of CD4+CD25+ T cells in draining lymph node and spleen but not contralateral node of tumor-bearing mice. Tumor injection in thymectomized and CD25-depleted mice shows that CD4+CD25+ T-cell expansion occurs even in the absence of the thymus and independently from proliferation of preexisting CD25+ T cells. These newly generated cells are bona fide regulatory T cells (T reg) in terms of Foxp3 expression and suppression of CD3-stimulated or allogeneic effector cell proliferation. Transfer of congenic Thy1.1 CD4+CD25- T cells, from mice treated or not with vinblastine, into tumor-bearing or tumor-free mice and analysis of recovered donor lymphocytes indicate that conversion is the main mechanism for acquiring the expression of CD25 and Foxp3 through a process that does not require proliferation. Although conversion of CD4+CD25- T cells for generation of T regs has been described as a natural process that maintains peripheral T-reg population, this process is used by the tumor for immune escape. The prompt recovery of T regs from monoclonal antibody-mediated CD25 depletion in tumor-bearing mice suggests attempts able to inactivate rather than deplete them when treating existing tumors.


Blood | 2012

Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity

Sabina Sangaletti; Claudio Tripodo; Claudia Chiodoni; Carla Guarnotta; Barbara Cappetti; Patrizia Casalini; Silvia Piconese; Mariella Parenza; Cristiana Guiducci; Caterina Vitali; Mario P. Colombo

Antineutrophil cytoplasmic antibodies (ANCAs) target proteins normally retained within neutrophils, indicating that cell death is involved in the autoimmunity process. Still, ANCA pathogenesis remains obscure. ANCAs activate neutrophils inducing their respiratory burst and a peculiar form of cell death, named NETosis, characterized by formation of neutrophil extracellular traps (NETs), decondensed chromatin threads decorated with cytoplasmic proteins endorsed with antimicrobial activity. NETs have been consistently detected in ANCA-associated small-vessel vasculitis, and this association prompted us to test whether the peculiar structure of NET favors neutrophil proteins uploading into myeloid dendritic cells and the induction of ANCAs and associated autoimmunity. Here we show that myeloid DCs uploaded with and activated by NET components induce ANCA and autoimmunity when injected into naive mice. DC uploading and autoimmunity induction are prevented by NET treatment with DNAse, indicating that NET structural integrity is needed to maintain the antigenicity of cytoplasmic proteins. We found NET intermingling with myeloid dendritic cells also positive for neutrophil myeloperoxidase in myeloperoxidase-ANCA-associated microscopic poliangiitis providing a potential correlative picture in human pathology. These data provide the first demonstration that NET structures are highly immunogenic such to trigger adaptive immune response relevant for autoimmunity.


Journal of Experimental Medicine | 2010

Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9

Cristiana Guiducci; Claudio Tripodo; Mei Gong; Sabina Sangaletti; Mario P. Colombo; Robert L. Coffman; Franck J. Barrat

Lupus-prone mice develop a chronic inflammatory response to cutaneous injury that depends on the production of type I interferon, TLR7, and TLR9.


Journal of Experimental Medicine | 2003

Leukocyte, Rather than Tumor-produced SPARC, Determines Stroma and Collagen Type IV Deposition in Mammary Carcinoma

Sabina Sangaletti; Antonella Stoppacciaro; Cristiana Guiducci; Maria Rosaria Torrisi; Mario P. Colombo

Secreted protein, acidic and rich in cysteine (SPARC), also known as osteonectin or BM-40, is a Ca2+-binding matricellular glycoprotein involved in development, wound healing, and neoplasia. However, the role of SPARC in tumors is ill defined mostly because it is expressed by both tumor and stromal cells, especially inflammatory cells. We analyzed the respective roles of host- and tumor-derived SPARC in wild-type and congenic SPARC knockout (SPARC−/−) mice on a BALB/c genetic background injected into the mammary fat pad with SPARC-producing mammary carcinoma cells derived from c-erB2 transgenic BALB/c mice. Reduced tumor growth but massive parenchyma infiltration, with large areas of necrosis and impaired vascularization were observed in SPARC−/− mice. Immunohistochemical analysis showed a defect in collagen type IV deposition in the stroma of lobular tumors from SPARC−/− mice. Chimeric mice expressing SPARC only in bone marrow–derived cells were able to organize peritumoral and perilobular stroma, whereas reciprocal chimeras transplanted with bone marrow from SPARC−/− mice developed tumors with less defined lobular structures, lacking assembled collagen type IV and with a parenchyma heavily infiltrated by leukocytes. Together, the data indicate that SPARC produced by host leukocytes, rather than the tumor, determines the assembly and function of tumor-associated stroma through the organization of collagen type IV.


Cancer Research | 2006

Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma

Iñigo Tirapu; Eduardo Huarte; Cristiana Guiducci; Ainhoa Arina; Mikel Zaratiegui; Oihana Murillo; Álvaro González; Carmen Berasain; Pedro Berraondo; Puri Fortes; Jesús Prieto; Mario P. Colombo; Lieping Chen; Ignacio Melero

Artificially enforced expression of CD80 (B7-1) and CD86 (B7-2) on tumor cells renders them more immunogenic by triggering the CD28 receptor on T cells. The enigma is that such B7s interact with much higher affinity with CTLA-4 (CD152), an inhibitory receptor expressed by activated T cells. We show that unmutated CD80 is spontaneously expressed at low levels by mouse colon carcinoma cell lines and other transplantable tumor cell lines of various tissue origins. Silencing of CD80 by interfering RNA led to loss of tumorigenicity of CT26 colon carcinoma in immunocompetent mice, but not in immunodeficient Rag-/- mice. CT26 tumor cells bind CTLA-4Ig, but much more faintly with a similar CD28Ig chimeric protein, thus providing an explanation for the dominant inhibitory effects on tumor immunity displayed by CD80 at that expression level. Interestingly, CD80-negative tumor cell lines such as MC38 colon carcinoma and B16 melanoma express CD80 at dim levels during in vivo growth in syngeneic mice. Therefore, low CD80 surface expression seems to give an advantage to cancer cells against the immune system. Our findings are similar with the inhibitory role described for the dim CD80 expression on immature dendritic cells, providing an explanation for the low levels of CD80 expression described in various human malignancies.

Collaboration


Dive into the Cristiana Guiducci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario P. Colombo

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Mei Gong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabina Sangaletti

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Edwina Naik

University of California

View shared research outputs
Top Co-Authors

Avatar

Marilynn Punaro

Texas Scottish Rite Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge