Cristiana Valle
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristiana Valle.
Human Molecular Genetics | 2010
Alberto Ferri; Paolo Fiorenzo; Monica Nencini; Mauro Cozzolino; Maria Grazia Pesaresi; Cristiana Valle; Sara Sepe; Sandra Moreno; Maria Teresa Carrì
Vulnerability of motoneurons in amyotrophic lateral sclerosis (ALS) arises from a combination of several mechanisms, including protein misfolding and aggregation, mitochondrial dysfunction and oxidative damage. Protein aggregates are found in motoneurons in models for ALS linked to a mutation in the gene coding for Cu,Zn superoxide dismutase (SOD1) and in ALS patients as well. Aggregation of mutant SOD1 in the cytoplasm and/or into mitochondria has been repeatedly proposed as a main culprit for the degeneration of motoneurons. It is, however, still debated whether SOD1 aggregates represent a cause, a correlate or a consequence of processes leading to cell death. We have exploited the ability of glutaredoxins (Grxs) to reduce mixed disulfides to protein thiols either in the cytoplasm and in the IMS (Grx1) or in the mitochondrial matrix (Grx2) as a tool for restoring a correct redox environment and preventing the aggregation of mutant SOD1. Here we show that the overexpression of Grx1 increases the solubility of mutant SOD1 in the cytosol but does not inhibit mitochondrial damage and apoptosis induced by mutant SOD1 in neuronal cells (SH-SY5Y) or in immortalized motoneurons (NSC-34). Conversely, the overexpression of Grx2 increases the solubility of mutant SOD1 in mitochondria, interferes with mitochondrial fragmentation by modifying the expression pattern of proteins involved in mitochondrial dynamics, preserves mitochondrial function and strongly protects neuronal cells from apoptosis. The toxicity of mutant SOD1, therefore, mostly arises from mitochondrial dysfunction and rescue of mitochondrial damage may represent a promising therapeutic strategy.
Trends in Parasitology | 2008
Donato Cioli; Cristiana Valle; Francesco Angelucci; Adriana E. Miele
It has been often observed that the chemotherapeutic armamentarium against an important disease such as schistosomiasis consists of just one drug, praziquantel. Thus, development of drug resistance is an impending danger, with serious implications for the health protection of many millions of people. This rational and legitimate concern might now begin to be relieved by the recent proposal of a new class of compounds that could represent a novel source of drugs against schistosomiasis.
Parasitology | 2007
Francesco Angelucci; A. Basso; Andrea Bellelli; M Brunori; L. Pica Mattoccia; Cristiana Valle
The mechanism of action of praziquantel (PZQ), the drug of choice against schistosomiasis, is still unclear. Since exposure of schistosomes to the drug is associated with calcium influx and muscular contraction, calcium channels have been suggested as the target, although direct combination of PZQ with their subunits was never demonstrated. We report a hitherto unknown effect of PZQ, namely the inhibition of nucleoside uptake, as observed in living worms using radio-isotope labelled adenosine and uridine. This effect is clearly seen in schistosomes but is absent in mammalian cells in culture. Moreover it is a specific pharmacological effect seen exclusively with the active levo-R(-)stereo isomer of the drug, and is shared by at least one benzodiazepine having antischistosomal activity. This novel effect acquires significance given that schistosomes cannot synthesize purine nucleosides de novo. A possible relationship between this novel effect and the known action of PZQ on calcium channels is discussed, since adenosine is known to bind to specific receptors and to behave as an indirect antagonist of calcium release in mammalian cells. If calcium channels were correlated with adenosine receptors also in schistosomes, as they are in mammals, this would support the hypothesis that PZQ-induced calcium influx may be correlated to adenosine receptor blockade.
Experimental Parasitology | 2008
Livia Pica-Mattoccia; Tiziana Orsini; Annalisa Basso; Alfredo Festucci; Piero Liberti; Alessandra Guidi; Ana-Luiza Marcatto-Maggi; Sonia Nobre-Santana; Anna-Rita Troiani; Donato Cioli; Cristiana Valle
The schistosomicidal activity of praziquantel (PZQ) is accompanied by a large influx of calcium into the worms, suggesting that this phenomenon could be the source of the observed muscular contraction, surface disruption and eventual death of the parasite. We have incubated live adult schistosomes in a medium containing radioactive calcium and we were able to confirm that PZQ does indeed stimulate calcium entry into the parasite. An even higher calcium uptake, however, occurred in schistosomes exposed to PZQ after pre-incubation with cytochalasin D, a condition that suppresses PZQ schistosomicidal effects and allows the complete survival of the parasites. The calcium blockers nicardipine and nifedipine also failed to prevent the calcium influx induced by PZQ. Similarly, a large calcium influx occurred in 28-day-old worms exposed to PZQ, in spite of the fact that these immature worms are largely insensitive to the schistosomicidal effects of the drug. Schistosomes incubated overnight with radioactive calcium and PZQ and then returned to normal medium, retained a calcium content higher than worms pre-incubated with cytochalasin D, but the difference could be a consequence--rather than a cause--of schistosomicidal effects. These results suggest that calcium accumulation by itself, at least as measured in whole parasites maintained in vitro, may not represent an exhaustive explanation for the schistosomicidal effects of PZQ.
Acta Tropica | 2009
Livia Pica-Mattoccia; Michael J. Doenhoff; Cristiana Valle; Annalisa Basso; Anna-Rita Troiani; Piero Liberti; Alfredo Festucci; Alessandra Guidi; Donato Cioli
A laboratory strain of Schistosoma mansoni subjected to repeated in vivo praziquantel (PZQ) treatments for several generations has been previously found to have lesser sensitivity to the drug than the original unselected strain. In this study we have collected evidence on the mode of inheritance of the partial insensitivity exhibited by the PZQ-selected schistosomes. A single male and a single female worm of the two strains, assorted in the four possible combinations, were introduced into the mesenteric veins of mice and the eggs produced by each pair were used as the source of the F(1) progeny. PZQ sensitivity was assessed using both in vivo and in vitro methods. In the first approach, the PZQ ED(50) was determined by infecting mice with cercariae of the strains to be tested, treating at seven weeks with different drug doses and counting the number of surviving worms three weeks later. For the in vitro approach, adult schistosomes kept in culture were exposed overnight to different PZQ concentrations and their survival was monitored during the subsequent 7 days. Results from both approaches lead to the conclusion that hybrid schistosomes of the F(1) generation have a drug sensitivity intermediate between those of the two parental strains and are thus suggestive of a pattern of partial dominance for the trait under study.
Frontiers in Cellular Neuroscience | 2015
Maria Teresa Carrì; Cristiana Valle; Francesca Bozzo; Mauro Cozzolino
It is well known that mitochondrial damage (MD) is both the major contributor to oxidative stress (OS) (the condition arising from unbalance between production and removal of reactive oxygen species) and one of the major consequences of OS, because of the high dependance of mitochondrial function on redox-sensitive targets such as intact membranes. Conditions in which neuronal cells are not able to cope with MD and OS seem to lead or contribute to several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS), at least in the most studied superoxide dismutase 1 (SOD1)-linked genetic variant. As summarized in this review, new evidence indicates that MD and OS play a role also in non-SOD1 ALS and thus they may represent a target for therapy despite previous failures in clinical trials.
Molecular and Biochemical Parasitology | 2003
Cristiana Valle; Anna Rita Troiani; Alfredo Festucci; Livia Pica-Mattoccia; Piero Liberti; Adrian J. Wolstenholme; Katherine Francklow; Michael J. Doenhoff; Donato Cioli
Kohn et al. [J. Biol. Chem. 276 (2001) 36873] demonstrated that cells expressing the structurally unusual schistosome beta subunit SmCavbeta1 in their voltage-operated calcium channels, exhibit an increased current amplitude in the presence of praziquantel (PZQ). This suggests that the beta subunit is involved in PZQ activity and is consistent with the known pharmacological effects of the drug. If this is so, the low susceptibility to PZQ noted in some Schistosoma mansoni strains could be due to some mutation(s) in the gene coding for this protein. We have sequenced the cDNAs coding for the SmCavbeta1 and SmCavbeta2 subunits of different sensitive and resistant strains and we have not been able to detect any meaningful differences. As an alternative hypothesis, the different sensitivity of schistosomes to PZQ action could be due to the expression of different beta subunits in the parasite. This interpretation could also explain the low PZQ susceptibility of immature worms (28 days). We analyzed Northern blots of various strains and various developmental stages, but we were unable to demonstrate major quantitative differences in the expression of the beta subunits.
PLOS ONE | 2011
Claudia Crosio; Cristiana Valle; Arianna Casciati; Ciro Iaccarino; Maria Teresa Carrì
Motor neuron death in amyotrophic lateral sclerosis (ALS) is considered a “non-cell autonomous” process, with astrocytes playing a critical role in disease progression. Glial cells are activated early in transgenic mice expressing mutant SOD1, suggesting that neuroinflammation has a relevant role in the cascade of events that trigger the death of motor neurons. An inflammatory cascade including COX2 expression, secretion of cytokines and release of NO from astrocytes may descend from activation of a NF-κB-mediated pathway observed in astrocytes from ALS patients and in experimental models. We have attempted rescue of transgenic mutant SOD1 mice through the inhibition of the NF-κB pathway selectively in astrocytes. Here we show that despite efficient inhibition of this major pathway, double transgenic mice expressing the mutant SOD1G93A ubiquitously and the dominant negative form of IκBα (IκBαAA) in astrocytes under control of the GFAP promoter show no benefit in terms of onset and progression of disease. Our data indicate that motor neuron death in ALS cannot be prevented by inhibition of a single inflammatory pathway because alternative pathways are activated in the presence of a persistent toxic stimulus.
Molecular and Biochemical Parasitology | 1995
Mo-Quen Klinkert; Francesca Bugli; Boris Engels; Elena Carrasquillo; Cristiana Valle; Donato Cioli
A cDNA encoding a Schistosoma mansoni cyclophilin (SmCyP) has been cloned by polymerase chain reaction amplification using degenerate oligonucleotides based on known conserved cyclophilin (CyP) sequences and by screening an expression cDNA library. The cDNA sequence encodes a 21.5-kDa protein, which shares 59% sequence identity with human CyP B. The SmCyP protein was expressed in Escherichia coli with a hexahistidine affinity tag at its amino terminus and antibodies to the purified (His6)-SmCyP fusion protein were raised in a rabbit. Fractionation of parasite material followed by immunoblot analysis revealed that schistosome CyP is a soluble protein. The N-terminus of the predicted protein contains a hydrophobic region, suggestive of a signal sequence. Accordingly, a recombinant SmCyP protein, lacking the first 23 amino acids was found to share the same gel electrophoretic mobility as the parasite-derived CyP protein, suggesting cleavage of a leader sequence. Hybridization of genomic DNA to a full-length cDNA probe indicates that the SmCyP gene is present as a single copy. Immunohistological experiments in conjunction with confocal scanning laser microscopy and immune electron microscopy show that SmCyP is present in abundance in the adult worm as well as in the schistosomula. The function of CyP in the schistosome is presently unclear, but since its ligand, cyclosporin A, has antischistosomal activity, its function is expected to be a vital one.
Journal of Biological Chemistry | 1999
Cristiana Valle; Alfredo Festucci; Calogero A; Macrì P; Mecozzi B; Piero Liberti; Donato Cioli
The ubiquitous vertebrate protein stathmin is expressed and phosphorylated in response to a variety of external and internal signals. Stathmin, in turn, controls cell growth and differentiation through its capacity to regulate microtubule assembly dynamics. This is the first report on the molecular cloning and characterization of a stathmin-like protein (SmSLP) in an invertebrate, the human blood fluke Schistosoma mansoni. SmSLP is first synthesized at high levels in the intermediate molluscan host and completely disappears 48 h after penetration into the mammalian host. The protein is preferentially iodinated in intact immature parasites using the Bolton-Hunter reagent, can be quantitatively extracted in high salt buffers, and remains soluble after boiling. Native SmSLP was partially sequenced, and its complete structure was derived from the cloning and sequencing of its cDNA. The sequence is up to 26% identical to vertebrate stathmin sequences and contains two potential phosphorylation sites. Native SmSLP is indeed phosphorylated because phosphatase digestion shifts its mobility in electrofocusing gels. SmSLP associates with tubulin, as suggested by immune co-precipitation results. In vitro experiments demonstrated that SmSLP inhibits tubulin assembly and causes the depolymerization of preassembled microtubules, thus probably fulfilling regulatory roles in critical steps of schistosome development.