Cristiane de Bona da Silva
Universidade Federal de Santa Maria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristiane de Bona da Silva.
European Journal of Pharmaceutics and Biopharmaceutics | 2011
Aline Ferreira Ourique; Ana Melero; Cristiane de Bona da Silva; Ulrich F. Schaefer; Adriana Raffin Pohlmann; Silvia Stanisçuaski Guterres; Claus-Michael Lehr; Karl-Heinz Kostka; Ruy Carlos Ruver Beck
The aims of this work were to increase the photostability and to reduce the skin permeation of tretinoin through nanoencapsulation. Tretinoin is widely used in the topical treatment of various dermatological diseases such as acne, psoriasis, skin cancer, and photoaging. Tretinoin-loaded lipid-core polymeric nanocapsules were prepared by interfacial deposition of a preformed polymer. Carbopol hydrogels containing nanoencapsulated tretinoin presented a pH value of 6.08±0.14, a drug content of 0.52±0.01 mg g(-1), pseudoplastic rheological behavior, and higher spreadability than a marketed formulation. Hydrogels containing nanoencapsulated tretinoin demonstrated a lower photodegradation (24.17±3.49%) than the formulation containing the non-encapsulated drug (68.64±2.92%) after 8h of ultraviolet A irradiation. The half-life of the former was seven times higher than the latter. There was a decrease in the skin permeability coefficient of the drug by nanoencapsulation, independently of the dosage form. The liquid suspension and the semisolid form provided K(p)=0.31±0.15 and K(p)=0.33±0.01 cm s(-1), respectively (p≤0.05), while the samples containing non-encapsulated tretinoin showed K(p)=1.80±0.27 and K(p)=0.73±0.12 cm s(-1) for tretinoin solution and hydrogel, respectively. Lag time was increased two times by nanoencapsulation, meaning that the drug is retained for a longer time on the skin surface.
Drug Development and Industrial Pharmacy | 2010
M.L. Marchiori; Greice Lubini; G. Dalla Nora; R.B. Friedrich; Márcia Camponogara Fontana; A.F. Ourique; M.O. Bastos; L.A. Rigo; Cristiane de Bona da Silva; Solange Bosio Tedesco; R.C.R. Beck
Context: Our group previously reported the development of dexamethasone-loaded polymeric nanocapsules as an alternative for topical dermatological treatments. Objective: Our study aimed to prepare and characterize a hydrogel containing this system to improve the effectiveness of the glucocorticoid for cutaneous disorders. Methods: For the antiproliferative activity assay, a dexamethasone solution and D-NC were tested on Allium cepa root meristem model. D-NC were prepared by the interfacial deposition of preformed polymer. Hydrogels were prepared using Carbopol Ultrez® 10 NF, as polymer, and characterized according to the following characteristics: pH, drug content, spreadability, viscosity, and in vitro drug release. Results and Discussion: Nanocapsules showed mean particle size and zeta potential of 201 ± 6 and −5.73 ± 0.42 nm, respectively. They demonstrated a lower mitotic index (4.62%) compared to free dexamethasone (8.60%). Semisolid formulations presented acidic pH values and adequate drug content (between 5.4% and 6.1% and 100% and 105%, respectively). The presence of nanocapsules in hydrogels led to a decrease in their spreadability factor. Intact nanoparticles were demonstrated by TEM as well as by dynamic light scattering (mean particle size < 300 nm). In vitro studies showed a controlled dexamethasone release from hydrogels containing the drug associated to the nanocapsules following the Higuchis squared root model (k = 20.21 ± 2.96 mg/cm2/h1/2) compared to the hydrogels containing the free drug (k = 26.65 ± 2.09 mg/cm2/h1/2). Conclusion: Taking all these results together, the hydrogel containing D-NC represent a promising approach to treat antiproliferative-related dermatological disorders.
Química Nova | 2011
Fernanda Cramer Flores; Roseane Fagundes Ribeiro; Aline Ferreira Ourique; Clarice Madalena Bueno Rolim; Cristiane de Bona da Silva; Adriana Raffin Pohlmann; Ruy Carlos Ruver Beck; Silvia Stanisçuaski Guterres
The goal of this study was to evaluate the feasibility of preparing nanocapsules and nanoemulsions using tea tree oil as oily phase aiming to protect its volatilization. The nanostructures presented nanometric mean size (160-220 nm) with a polydispersity index below 0.25 and negative zeta potential. The pH values were 6.43 ± 0.37 and 5.98 ± 0.00 for nanoemulsions and nanocapsules, respectively. The oil content after preparation was 96%. The inclusion of tea tree oil in nanocapsules showed higher protection against volatilization. The analysis of mean size and polydispersity index of formulations presented no significant alteration during the storage time.
European Journal of Pharmaceutics and Biopharmaceutics | 2015
Lucas Almeida Rigo; Cássia Regina Silva; Sara Marchesan Oliveira; Thaíssa Nunes Cabreira; Cristiane de Bona da Silva; Juliano Ferreira; Ruy Carlos Ruver Beck
Excessive UV-B radiation by sunlight produces inflammatory and oxidative damage of skin, which can lead to sunburn, photoaging, and cancer. This study evaluated whether nanoencapsulation improves the protective effects of rice bran oil against UVB radiation-induced skin damage in mice. Lipid-core nanocapsules containing rice bran oil were prepared, and had mean size around 200 nm, negative zeta potential (∼-9 mV), and low polydispersity index (<0.20). In order to allow application on the skin, a hydrogel containing the nanoencapsulated rice bran oil was prepared. This formulation was able to prevent ear edema induced by UVB irradiation by 60 ± 9%, when compared with a hydrogel containing LNC prepared with a mixture of medium chain triglycerides instead of rice bran oil. Protein carbonylation levels (biomarker of oxidative stress) and NF-κB nuclear translocation (biomarker of pro-inflammatory and carcinogenesis response) were reduced (81% and 87%, respectively) in animals treated with the hydrogel containing the nanoencapsulated rice bran oil. These in vivo results demonstrate the beneficial effects of nanoencapsulation to improve the protective properties of rice bran oil on skin damage caused by UVB exposure.
Materials Science and Engineering: C | 2014
Aline de Arce Velasquez; Luana Mota Ferreira; Mônica Fabiele Lorensi Stangarlin; Cristiane de Bona da Silva; Clarice Madalena Bueno Rolim; Letícia Cruz
Polymer blends have been considered a promising strategy to tailor drug release. In order to achieve gastroresistance and controlled release, Pullulan, a polysaccharide, and Eudragit® S100, an enteric polymer were selected to prepare microparticles for oral delivery of risedronate, an antiresorptive drug associated with GI tract injuries. Blend microparticles were prepared by spray-drying technique at 3 Pullulan and Eudragit® S100 ratios (MP2:1, MP1:1 and MP1:2) and were characterized in terms of yield, particle size, encapsulation efficiency, morphology, moisture content, flowability and in vitro drug release profiles. Microparticles presented yields between 31 and 42%, encapsulation efficiencies close to 100%, moisture contents lower than 11%, particle size ranging from 2.9 to 4.8 μm and narrow distribution. In the gastric medium, MP1:2 showed the best gastroresistance profile. In the intestinal fluid, all samples were able to prolong drug release. MP1:2 was compressed into tablets with or without polyvinylpyrrolidone. Both tableted microparticles could be obtained with acceptable average weights, drug content close to 100%, sufficient hardness and low friability. In vitro studies showed that tablets maintained the gastroresistance observed for microparticles and were also able to prolong risedronate release. In conclusion, Pullulan/Eudragit® S100 microparticles are promising alternatives for the oral delivery of risedronate in the future.
Pharmaceutical Biology | 2013
Tamara Pastori; Fernanda Cramer Flores; Aline Augusti Boligon; Margareth Linde Athayde; Cristiane de Bona da Silva; Thais Scotti do Canto-Dorow; Solange Bosio Tedesco
Abstract Context. Campomanesia xanthocarpa Berg. (Myrtaceae), popularly known in Brazil as guabiroba, is a plant used as antidiarrheic, anti-inflammatory and antirheumatic agents, and in stomach and hepatic disorders. Objective: The antiproliferative and genotoxic effects of aqueous extracts and essential oil of C. xanthocarpa were evaluated. Materials and methods: Cytotoxicity and genotoxicity of the aqueous extracts (6 and 30 mg/mL) and essential oil (0.25%, v/v) obtained from leaves of C. xanthocarpa were evaluated using the Allium cepa L. (Amaryllidaceae) assay. Mitotic index was calculated as the percentage of dividing cells of total cells observed; chromosome abnormalities were observed and counted during cell division. Additionally, the composition of the essential oil and the quantification of the main compounds of the extracts were determined by gas chromatography/mass spectrometry and high performance liquid chromatography coupled with diode array detector, respectively. Results and discussion: Aqueous extracts (6 and 30 mg/mL) led to a reduction of 67.7% and 34.1% of the mitotic index, respectively, whereas the treatment with essential oil caused a 48.2% reduction in the mitotic index, when compared with negative control. Chromosomal mutations were observed and included anaphase bridges, delay chromosome, break chromosome, as well as metaphase with disorganized chromosomal and binuclear cells. The main compounds of the essential oil were β-caryophyllene (8.87%), viridiflorol (6.40%), spathulenol (5.16%), δ-cadinene (4.92%), linalool (4.46%) and α-cadinol (4.25%). Gallic acid (3.19%), chlorogenic acid (1.04%), quercetin (2.97%) and rutin (4.82%) were identified in an aqueous extract (30 mg/mL). Conclusion: Our results demonstrated that genotoxic and antiproliferative activities are present in C. xanthocarpa infusions using the in vivo onion root-tip cell test.
Mycopathologia | 2016
Fernanda Cramer Flores; Ruy Carlos Ruver Beck; Cristiane de Bona da Silva
Onychomycosis are fungal infections affecting finger and toenails mainly caused by dermatophyte fungi and some Candida species. Low cure rates and frequent recurrence, development of a fungal resistance front to various antimicrobial agents topical and systemic, and an ineffective topical treatment make onychomycosis difficult to treat. Essential oils are excellent candidates for the topical treatment for onychomycosis because the development of resistance by fungi is rare, and the presence of side effects is low. They are composed of a complex variety of compounds, mainly terpenes, with low molecular weight, which may easily penetrate into the nail plate, finding the fungi elements. The complex mixture confers a broad antifungal spectrum of action, through interaction with biological membranes, interference in radical and enzymatic reaction of fungi cells. Essential oils may become the source of new therapeutic molecules, and the use of an essential oil incorporated into a topical formulation is an interesting, safe, and effective alternative for the treatment for onychomycosis. However, studies are needed to evaluate the efficacy of essential oils in the treatment for onychomycosis in vivo. This mini-review aims to present the potential use of essential oils for the treatment for onychomycosis, focusing on the last decade.
Parasitology | 2015
Luciane T. Gressler; Camila B. Oliveira; L. Dalla Rosa; Thirssa H. Grando; Matheus D. Baldissera; Carine Eloise Prestes Zimmermann; A.S. Da Silva; Taís C. Almeida; Carine L. Hermes; Patrícia Wolkmer; Cristiane de Bona da Silva; Karen L.S. Moreira; Ruy Carlos Ruver Beck; Rafael Noal Moresco; M. L. Da Veiga; Lenita M. Stefani; Silvia Gonzalez Monteiro
This study aimed to evaluate in vitro and in vivo trypanocidal activity of free and nanoencapsulated curcumin against Trypanosoma evansi. In vitro efficacy of free curcumin (CURC) and curcumin-loaded in lipid-core nanocapsules (C-LNCs) was evaluated to verify their lethal effect on T. evansi. To perform the in vivo tests, T. evansi-infected animals were treated with CURC (10 and 100 mg kg(-1), intraperitoneally [i.p.]) and C-LNCs (10 mg kg(-1), i.p.) during 6 days, with the results showing that these treatments significantly attenuated the parasitaemia. Infected untreated rats showed protein peroxidation and an increase of nitrites/nitrates, whereas animals treated with curcumin showed a reduction on these variables. As a result, the activity of antioxidant enzymes (superoxide dismutase and catalase) differs between groups (P<0.05). Infected animals and treated with CURC exhibited a reduction in the levels of alanine aminotransferase and creatinine, when compared with the positive control group. The use of curcumin in vitro resulted in a better parasitaemia control, an antioxidant activity and a protective effect on liver and kidney functions of T. evansi-infected adult male Wistar rats.
Materials Science and Engineering: C | 2016
Roseane Fagundes Ribeiro; Mariana Heldt Motta; Andréia Pisching Garcia Härter; Fernanda Cramer Flores; Ruy Carlos Ruver Beck; Scheila Rezende Schaffazick; Cristiane de Bona da Silva
This work aimed to obtain solid formulations from polymeric nanocapsules and nanoemulsions containing tioconazole, a broad spectrum antifungal drug. Two dehydration methods were used: spray-drying and freeze drying, using lactose as adjuvant (10%, w/v). The liquid formulations had a mean particle size around 206 nm and 182 nm for nanocapsules and nanoemulsions, respectively, and an adequate polydispersity index. Tioconazole content was close to the theoretical amount (1.0 mg/mL). After drying, the content ranged between 98 and 102%with a mean nanometric size of the dried products after redispersion. Scanning electron microscopy showed that the particles are rounded, sphere-shaped for the dried products obtained by spray-drying, and shapeless and irregular shapes for those obtained by freeze-drying. In the microbiological evaluation, all dried products remained active against the yeast Candida albicans when compared to the original systems. The dried products obtained by spray-drying from nanocapsules presented better control of the tioconazole release when compared to the freeze-drying products.
Arquivo Brasileiro De Medicina Veterinaria E Zootecnia | 2015
L. Sagave; Letícia Trevisan Gressler; Fernanda Cramer Flores; Cristiane de Bona da Silva; Agueda P.C. Vargas; Maristela Lovato; Luís Antônio Sangioni; Luciana Pötter; Sônia de Avila Botton
Rhodococcus equi causes rodococose in horses, characterized by bronchopneumonia in foals. Due to reports of antimicrobial resistance, it is important to develop studies involving alternative therapies and new technologies, including the use of medicinal plants and nanotechnology. In this work, the plant Melaleuca alternifolia in oil free formulations, nanocapsule, nanoemulsion and the combination of free and nanocapsule oil nanoemulsion, besides its major compound, terpinen-4-ol, were used in order to verify antimicrobial activity against isolates of R. equi. The broth microdilution method was employed to determine the minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations of different formulations against 24 isolates. There was low antibacterial activity of M. alternifolia in oil free formulation; however, it was observed that the activity was enhanced when incorporated as essential oil the nanoformulations. The major compound, terpinen-4-ol, showed bactericidal and bacteriostatic activity when used alone. It is suggested that M. alternifolia, in association with nanocarriers systems, as well as terpinen -4-ol, presents potential for future studies concerning the equine rodococosis therapy.