Cristina Camprubí
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristina Camprubí.
Nature | 2013
Javier Prado-Martinez; Peter H. Sudmant; Jeffrey M. Kidd; Heng Li; Joanna L. Kelley; Belen Lorente-Galdos; Krishna R. Veeramah; August E. Woerner; Timothy D. O’Connor; Gabriel Santpere; Alexander Cagan; Christoph Theunert; Ferran Casals; Hafid Laayouni; Kasper Munch; Asger Hobolth; Anders E. Halager; Maika Malig; Jessica Hernandez-Rodriguez; Irene Hernando-Herraez; Kay Prüfer; Marc Pybus; Laurel Johnstone; Michael Lachmann; Can Alkan; Dorina Twigg; Natalia Petit; Carl Baker; Fereydoun Hormozdiari; Marcos Fernandez-Callejo
Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria–Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.
Biology of Reproduction | 2013
Cristina Camprubí; Isabel Iglesias-Platas; Alex Martin-Trujillo; Cristina Salvador-Alarcon; Maria Angeles Rodriguez; Dalia Rodriguez Barredo; Franck Court; David Monk
ABSTRACT For the past three decades, assisted reproductive technologies (ART) have revolutionized infertility treatments. The use of ART is thought to be safe. However, early investigations suggested that children born as a result of ART had higher risk of diseases with epigenetic etiologies, including imprinting disorders caused by a lack of maternal methylation at imprinting control elements. In addition, large epidemiology studies have highlighted an increased risk of obstetric complications, including severe intrauterine growth restriction (IUGR) in babies conceived using ART. It is plausible that the increased frequency of IUGR may be due to abnormal imprinting because these transcripts are key for normal fetal growth and development. To address this, we have collected a large cohort of placenta and cord blood samples from ART conceptions and compared the imprinting status with appropriate non-ART population. Using a custom DNA methylation array that simultaneously quantifies 25 imprinted differentially methylated regions, we observed similar epigenetic profiles between groups. A multiplex Sequenom iPLEX allelic expression assay revealed monoallelic expression for 11 imprinted transcripts in our placenta cohort. We also observe appropriate gestational age-dependent methylation dynamics at retrotransposable elements and promoters associated with growth genes in ART placental biopsies. This study confirms that children conceived by ART do not show variability in imprinted regulation and that loss-of-imprinting is not commonly associated with nonsyndromic IUGR or prematurity.
Epigenetics & Chromatin | 2014
Franck Court; Cristina Camprubí; Cristina García; Amy Guillaumet-Adkins; Angela Sparago; Davide Seruggia; Juan Sandoval; Manel Esteller; Alex Martin-Trujillo; Andrea Riccio; Lluís Montoliu; David Monk
BackgroundGenomic imprinting is the epigenetic marking of genes that results in parent-of-origin monoallelic expression. Most imprinted domains are associated with differentially DNA methylated regions (DMRs) that originate in the gametes, and are maintained in somatic tissues after fertilization. This allelic methylation profile is associated with a plethora of histone tail modifications that orchestrates higher order chromatin interactions. The mouse chromosome 15 imprinted cluster contains multiple brain-specific maternally expressed transcripts including Ago2, Chrac1, Trappc9 and Kcnk9 and a paternally expressed gene, Peg13. The promoter of Peg13 is methylated on the maternal allele and is the sole DMR within the locus. To determine the extent of imprinting within the human orthologous region on chromosome 8q24, a region associated with autosomal recessive intellectual disability, Birk-Barel mental retardation and dysmorphism syndrome, we have undertaken a systematic analysis of allelic expression and DNA methylation of genes mapping within an approximately 2 Mb region around TRAPPC9.ResultsUtilizing allele-specific RT-PCR, bisulphite sequencing, chromatin immunoprecipitation and chromosome conformation capture (3C) we show the reciprocal expression of the novel, paternally expressed, PEG13 non-coding RNA and maternally expressed KCNK9 genes in brain, and the biallelic expression of flanking transcripts in a range of tissues. We identify a tandem-repeat region overlapping the PEG13 transcript that is methylated on the maternal allele, which binds CTCF-cohesin in chromatin immunoprecipitation experiments and possesses enhancer-blocker activity. Using 3C, we identify mutually exclusive approximately 58 and 500 kb chromatin loops in adult frontal cortex between a novel brain-specific enhancer, marked by H3K4me1 and H3K27ac, with the KCNK9 and PEG13 promoters which we propose regulates brain-specific expression.ConclusionsWe have characterised the molecular mechanism responsible for reciprocal allelic expression of the PEG13 and KCNK9 transcripts. Therefore, our observations may have important implications for identifying the cause of intellectual disabilities associated with the 8q24 locus.
Epigenetics | 2012
Cristina Camprubí; Marta Pladevall; Mark Grossmann; Nicolás Garrido; Maria del Carme Pons; Joan Blanco
The topic of imprinting defects present in the sperm of infertile patients has been addressed by several reports in the last few years. However, whether methylation abnormalities at one or few CpGs within an imprinted locus are pathological is a matter of debate. Moreover, whether imprinting anomalies in sperm could interfere with fertility treatment outcomes is still unknown. In this report we analyze the sperm DNA methylation profile of H19-ICR, KvDMR, SNRPN-ICR, IG-DMR and MEG3-DMR by pyrosequencing in 107 infertile men series and a control population of 30 proven fertile males. DNA methylation was statistically evaluated from two points of view: first, the methylation of each CpG was analyzed in the control population and the mean, standard deviation and range were determined and compared with infertile population data; second, in order to define altered methylation patterns for each region, a hierarchical cluster analysis was performed by which individuals were grouped in different clusters according to the degree of similarity of their methylation pattern. Two pieces of data supported the results obtained in the multi-variate analysis: the classification of the vast majority of control individuals in clusters with normal methylation patterns and the significant differences in methylation levels found between individuals within the normal and abnormal clusters. Individuals included in normal and abnormal methylation clusters were compared according to seminal parameters as well as to the outcome of assisted reproduction.
American Journal of Medical Genetics Part A | 2009
Cristina Camprubí; Miriam Guitart; Elisabeth Gabau; M.D. Coll; Sergi Villatoro; Silvestre Oltra; Mónica Roselló; I Ferrer; Sandra Monfort; Carmen Orellana; Francisco Venegas Martínez
Angelman syndrome (AS) is a genetic disorder caused by a deficiency of UBE3A imprinted gene expression from the maternal chromosome 15. In 10% of AS cases the genetic cause is a mutation affecting the maternal copy of the UBE3A gene. In two large Spanish series of clinically stringently selected and nonstringently selected patients, we have identified 11 pathological mutations—eight of them novel mutations—and 14 sequence changes considered polymorphic variants. Remarkably, single nucleotide substitutions are more likely to be inherited, while multiple nucleotide deletions or insertions are less frequently inherited, thus indicating that single nucleotide substitutions are more likely to originate from the paternal germline. Additionally, there seems to be a different distribution of nucleotide changes and multiple nucleotide deletions or insertions along the UBE3A gene sequence.
American Journal of Medical Genetics | 2014
Marta Sánchez Delgado; Cristina Camprubí; Zeynep Tümer; Francisco Venegas Martínez; Montserrat Milà; David Monk
The phenotype overlap between autism spectrum disorders (ASD) & intellectual disabilities (ID) is mirrored at the genetic level, with common genes being reported mutated in variety of developmental disabilities. However despite widespread genetic screening for mutations, in approximately 40–60% of childhood developmental disorders the genetic cause remains unknown. Several genome‐wide linkage screens in ASD have identified a locus mapping to distal 8q. We have recently identified a novel brain‐specific imprinted cluster at this location, which contains the reciprocally expressed maternal KCNK9 and paternally expressed non‐coding PEG13 transcripts, the latter located within an intron of TRAPPC9. Interestingly, mutations of KCNK9 and TRAPPC9 have been reported in Birk‐Barel mental retardation and non‐syndromic familial forms of ID, respectively.
Journal of Assisted Reproduction and Genetics | 2013
Cristina Camprubí; Marta Pladevall; Mark Grossmann; Nicolás Garrido; Maria del Carme Pons; Joan Blanco
PurposeTo find out whether the MTHFR rs1801133 polymorphism is a risk factor for male infertility in the Spanish population. To determine if a pattern of sperm DNA hypomethylation at the paternally imprinted loci H19-ICR and/or IG-DMR is related to the MTHFR rs1801133 polymorphism and/or CTCFL mutations.MethodsOne hundred and seven samples from individuals who sought consultation for fertility problems and twenty-five semen samples from sperm donors were analyzed. The MTHFR rs1801133 SNP was analyzed in all samples by the PCR-RFLP method. We compared the distribution of the genotypes between control and infertile populations and among the groups of patients with altered seminal parameters. In those patients with the most severe hypomethylation pattern (n = 12) we also analyzed the CTCFL protein-coding exons by sequencing.ResultsThere were no significant differences in the distribution of the genotypes among the control and infertile populations. Moreover, none of the genotypes were associated, neither to the characteristics of the seminogram, nor to the presence of sperm DNA hypomethylation. We did not identify frameshift, nonsense or missense mutations of the CTCFL gene.ConclusionsThe MTHFR rs1801133 polymorphism is not associated with male infertility in the Spanish population. Neither the MTHFR polymorphism, nor CTCFL mutations explain a pattern of sperm hypomethylation at paternally imprinting loci.
Reproductive Biomedicine Online | 2016
Cristina Camprubí; Albert Salas-Huetos; Riccardo Aiese-Cigliano; Anna Godo; Maria-Carme Pons; Giancarlo Castellano; Mark Grossmann; Walter Sanseverino; José I. Martín-Subero; Nicolás Garrido; Joan Blanco
The influence of aberrant sperm DNA methylation on the reproductive capacity of couples has been postulated as a cause of infertility. This study compared the DNA methylation of spermatozoa of 19 fertile donors and 42 infertile patients using the Illumina 450K array. Clustering analysis of methylation data arranged fertile and infertile patients into two groups. Bivariate clustering analysis identified a differential distribution of samples according to the characteristics of seminogram and age, suggesting a possible link between these parameters and specific methylation profiles. The study identified 696 differentially methylated cytosine-guanine dinucleotides (CpG) associated with 501 genes between fertile donors and infertile patients. Ontological enrichment analysis revealed 13 processes related to spermatogenesis. Data filtering identified a set of 17 differentially methylated genes, some of which had functions relating to spermatogenesis. A significant association was identified between RPS6KA2 hypermethylation and advanced age (P = 0.016); APCS hypermethylation and oligozoospermia (P = 0.041); JAM3/NCAPD3 hypermethylation and numerical chromosome sperm anomalies (P = 0.048); and ANK2 hypermethylation and lower pregnancy rate (P = 0.040). This description of a set of differentially methylated genes provides a framework for further investigation into the influence of such variation in male fertility in larger patient cohorts.
European Journal of Human Genetics | 2010
Cristina Camprubí; M.D. Coll; Elisabeth Gabau; Miriam Guitart
We read with great interest the recent Prader–Willi syndrome (PWS) and Angelman syndrome (AS) review articles by Cassidy and Driscoll (2009)1 and by Van Buggenhout and Fryns (2009),2 respectively. We completely agree with most of the contents. However, we consider it important to point out certain comments appearing in the genetic counseling section of both articles.
Revista Portuguesa De Pneumologia | 2009
David Poyatos; Cristina Camprubí; Elisabeth Gabau; Ramón Nosas; Sergi Villatoro; M.D. Coll; Miriam Guitart
BACKGROUND The Prader-Willi syndrome (PWS) is a disease of genetic origin. It is characterized by neonatal hypotonia, hypogonadism, hiperfagia leading to obesity, low stature, developmental delay, moderate mental retardation, abnormal behavior and characteristic facial appearance. It is caused by the loss or the inactivation of paternal genes of the imprinted region 15q11-13. There are different genetic causes: paternal 15q11-q13 deletion in 70% of patients, maternal uniparental disomy in the 20-25% and less than 5% have an imprinting defect. We present the results obtained in the transverse clinical - genetic study of 77 PWS patients. PATIENTS AND METHODS There has been realized the study of 374 suspected PWS patients. Cytogenetics studies of bands G and hybridization in situ fluorescent (FISH) and molecular genetics analysis of microsatellites, Southern blot, MS-PCR and sequenciation were carried out. Holms criteria use for the correlation phenotype - genotype in 48 patients. RESULTS PWS was confirmed in 77 patients, 46 deletion, 16 uniparental disomy, two imprinting defect and 13 only PWS methylation pattern. Significant differences do not observe in the correlation phenotype - genotype. CONCLUSIONS The frequencies of the molecular alterations, 71.87 % deletion, 25 % UPD and 3.12 % DI, they are similar to described in the literature. It presents the algorithm of diagnosis used with the MS-PCR as rapid technology to confirm PWS.